Доверительный интервал. Доверительные интервалы для математического ожидания, дисперсии, вероятности. Решения задач

Пусть случайная величина распределена по нормальному закону, для которого дисперсия D неизвестна. Делается выборка объема n . Из нее определяется исправленная выборочная дисперсия s 2 . Случайная величина

распределена по закону 2 c n -1 степенями свободы. По заданной надежности можно найти сколько угодно границ 1 2 и 2 2 интервалов, таких, что

Найдем 1 2 и 2 2 из следующих условий:

P(2 1 2) = (1 -)/ 2(**)

P(2 2 2) = (1 -)/ 2(***)

Очевидно, что при выполнении двух последних условий справедливо равенство (*).

В таблицах для случайной величины 2 обычно дается решение уравнения

Из такой таблицы по заданной величине q и по числу степеней свободы n - 1 можно определить значение q 2 . Таким образом, сразу находится значение 2 2 в формуле (***).

Для определения 1 2 преобразуем (**):

P(2 1 2) = 1 - (1 -)/ 2 = (1 +)/ 2

Полученное равенство позволяет определить по таблице значение 1 2 .

Теперь, когда найдены значения 1 2 и 2 2 , представим равенство (*) в виде

Последнее равенство перепишем в такой форме, чтобы были определены границы доверительного интервала для неизвестной величины D:

Отсюда легко получить формулу, по которой находится доверительный интервал для стандартного отклонения:

Задача. Будем считать, что шум в кабинах вертолетов одного и того же типа при работающих в определенном режиме двигателях -- случайная величина, распределенная по нормальному закону. Было случайным образом выбрано 20 вертолетов, и произведены замеры уровня шума (в децибелах) в каждом из них. Исправленная выборочная дисперсия измерений оказалась равной 22,5. Найти доверительный интервал, накрывающий неизвестное стандартное отклонение величины шума в кабинах вертолетов данного типа с надежностью 98%.

Решение. По числу степеней свободы, равному 19, и по вероятности (1 - 0,98)/2 = 0,01 находим из таблицы распределения 2 величину 2 2 = 36,2. Аналогичным образом при вероятности (1 + 0,98)/2 = 0,99 получаем 1 2 = 7,63. Используя формулу (****), получаем искомый доверительный интервал: (3,44; 7,49).

Построим доверительный интервал для оценки дисперсии случайной величины, распределенной по нормальному закону, в MS EXCEL .

Построение доверительного интервала для оценки приведено в статье . Процедура построения доверительного интервала для оценки имеет много общего с процедурой для оценки среднего , поэтому в этой статье она изложена менее подробно, чем в указанной статье.

Формулировка задачи. Предположим, что из генеральной совокупности имеющей с неизвестным средним значением μ и неизвестной дисперсией σ 2 взята выборка размера n. Необходимо на основании этой выборки оценить дисперсию распределения и построить доверительный интервал .

Примечание : Построение относительно нечувствительно к отклонению генеральной совокупности от . А вот при построении доверительного интервала для оценки требование нормальности является строгим.

СОВЕТ : Для построения Доверительного интервала нам потребуется знание следующих понятий:

В качестве точечной оценкой дисперсии распределения, из которого взята выборка , используют Дисперсию выборки s 2 .

Также, перед процедурой проверки гипотезы , исследователь устанавливает требуемый – это допустимая для данной задачи ошибка первого рода , т.е. вероятность отклонить нулевую гипотезу , когда она верна (уровень значимости обозначают буквой α (альфа) и чаще всего выбирают равным 0,1; 0,05 или 0,01)

В статье про ХИ2-распределение показано, что y=(n-1)s 2 /σ 2 , имеет ХИ2-распределение с n-1 степенью свободы.

Воспользуемся этим свойством и построим двухсторонний доверительный интервал для оценки дисперсии .

Построим в MS EXCEL доверительный интервал для оценки среднего значения распределения в случае известного значения дисперсии.

Разумеется, выбор уровня доверия полностью зависит от решаемой задачи. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Формулировка задачи

Предположим, что из генеральной совокупности имеющей взята выборка размера n. Предполагается, что стандартное отклонение этого распределения известно. Необходимо на основании этой выборки оценить неизвестное среднее значение распределения (μ, ) и построить соответствующий двухсторонний доверительный интервал .

Точечная оценка

Как известно из , статистика (обозначим ее Х ср ) является несмещенной оценкой среднего этой генеральной совокупности и имеет распределение N(μ;σ 2 /n).

Примечание : Что делать, если требуется построить доверительный интервал в случае распределения, которое не является нормальным? В этом случае на помощь приходит , которая гласит, что при достаточно большом размере выборки n из распределения не являющемся нормальным , выборочное распределение статистики Х ср будет приблизительно соответствовать нормальному распределению с параметрами N(μ;σ 2 /n).

Итак, точечная оценка среднего значения распределения у нас есть – это среднее значение выборки , т.е. Х ср . Теперь займемся доверительным интервалом.

Построение доверительного интервала

Обычно, зная распределение и его параметры, мы можем вычислить вероятность того, что случайная величина примет значение из заданного нами интервала. Сейчас поступим наоборот: найдем интервал, в который случайная величина попадет с заданной вероятностью. Например, из свойств нормального распределения известно, что с вероятностью 95%, случайная величина, распределенная по нормальному закону , попадет в интервал примерно +/- 2 от среднего значения (см. статью про ). Этот интервал, послужит нам прототипом для доверительного интервала .

Теперь разберемся,знаем ли мы распределение, чтобы вычислить этот интервал? Для ответа на вопрос мы должны указать форму распределения и его параметры.

Форму распределения мы знаем – это нормальное распределение (напомним, что речь идет о выборочном распределении статистики Х ср ).

Параметр μ нам неизвестен (его как раз нужно оценить с помощью доверительного интервала ), но у нас есть его оценка Х ср, вычисленная на основе выборки, которую можно использовать.

Второй параметр – стандартное отклонение выборочного среднего будем считать известным , он равен σ/√n.

Т.к. мы не знаем μ, то будем строить интервал +/- 2 стандартных отклонения не от среднего значения , а от известной его оценки Х ср . Т.е. при расчете доверительного интервала мы НЕ будем считать, что Х ср попадет в интервал +/- 2 стандартных отклонения от μ с вероятностью 95%, а будем считать, что интервал +/- 2 стандартных отклонения от Х ср с вероятностью 95% накроет μ – среднее генеральной совокупности, из которого взята выборка . Эти два утверждения эквивалентны, но второе утверждение нам позволяет построить доверительный интервал .

Кроме того, уточним интервал: случайная величина, распределенная по нормальному закону , с вероятностью 95% попадает в интервал +/- 1,960 стандартных отклонений, а не+/- 2 стандартных отклонения . Это можно рассчитать с помощью формулы =НОРМ.СТ.ОБР((1+0,95)/2) , см. файл примера Лист Интервал .

Теперь мы можем сформулировать вероятностное утверждение, которое послужит нам для формирования доверительного интервала :
«Вероятность того, что среднее генеральной совокупности находится от среднего выборки в пределах 1,960 «стандартных отклонений выборочного среднего» , равна 95%».

Значение вероятности, упомянутое в утверждении, имеет специальное название , который связан с уровнем значимости α (альфа) простым выражением уровень доверия =1 . В нашем случае уровень значимости α=1-0,95=0,05 .

Теперь на основе этого вероятностного утверждения запишем выражение для вычисления доверительного интервала :

где Z α/2 стандартного нормального распределения (такое значение случайной величины z , что P (z >=Z α/2 )=α/2 ).

Примечание : Верхний α/2-квантиль определяет ширину доверительного интервала в стандартных отклонениях выборочного среднего. Верхний α/2-квантиль стандартного нормального распределения всегда больше 0, что очень удобно.

В нашем случае при α=0,05, верхний α/2-квантиль равен 1,960. Для других уровней значимости α (10%; 1%) верхний α/2-квантиль Z α/2 можно вычислить с помощью формулы =НОРМ.СТ.ОБР(1-α/2) или, если известен уровень доверия , =НОРМ.СТ.ОБР((1+ур.доверия)/2) .

Обычно при построении доверительных интервалов для оценки среднего используют только верхний α /2-квантиль и не используют нижний α /2-квантиль . Это возможно потому, что стандартное нормальное распределение симметрично относительно оси х (плотность его распределения симметрична относительно среднего, т.е. 0 ). Поэтому, нет нужды вычислять нижний α/2-квантиль (его называют просто α/2-квантиль ), т.к. он равен верхнему α /2-квантилю со знаком минус.

Напомним, что, не смотря на форму распределения величины х, соответствующая случайная величина Х ср распределена приблизительно нормально N(μ;σ 2 /n) (см. статью про ). Следовательно, в общем случае, вышеуказанное выражение для доверительного интервала является лишь приближенным. Если величина х распределена по нормальному закону N(μ;σ 2 /n), то выражение для доверительного интервала является точным.

Расчет доверительного интервала в MS EXCEL

Решим задачу.
Время отклика электронного компонента на входной сигнал является важной характеристикой устройства. Инженер хочет построить доверительный интервал для среднего времени отклика при уровне доверия 95%. Из предыдущего опыта инженер знает, что стандартное отклонение время отклика составляет 8 мсек. Известно, что для оценки времени отклика инженер сделал 25 измерений, среднее значение составило 78 мсек.

Решение : Инженер хочет знать время отклика электронного устройства, но он понимает, что время отклика является не фиксированной, а случайной величиной, которая имеет свое распределение. Так что, лучшее, на что он может рассчитывать, это определить параметры и форму этого распределения.

К сожалению, из условия задачи форма распределения времени отклика нам не известна (оно не обязательно должно быть нормальным ). , этого распределения также неизвестно. Известно только его стандартное отклонение σ=8. Поэтому, пока мы не можем посчитать вероятности и построить доверительный интервал .

Однако, не смотря на то, что мы не знаем распределение времени отдельного отклика , мы знаем, что согласно ЦПТ , выборочное распределение среднего времени отклика является приблизительно нормальным (будем считать, что условия ЦПТ выполняются, т.к. размер выборки достаточно велик (n=25)).

Более того, среднее этого распределения равно среднему значению распределения единичного отклика, т.е. μ. А стандартное отклонение этого распределения (σ/√n) можно вычислить по формуле =8/КОРЕНЬ(25) .

Также известно, что инженером была получена точечная оценка параметра μ равная 78 мсек (Х ср). Поэтому, теперь мы можем вычислять вероятности, т.к. нам известна форма распределения (нормальное ) и его параметры (Х ср и σ/√n).

Инженер хочет знать математическое ожидание μ распределения времени отклика. Как было сказано выше, это μ равно математическому ожиданию выборочного распределения среднего времени отклика . Если мы воспользуемся нормальным распределением N(Х ср; σ/√n), то искомое μ будет находиться в интервале +/-2*σ/√n с вероятностью примерно 95%.

Уровень значимости равен 1-0,95=0,05.

Наконец, найдем левую и правую границу доверительного интервала .
Левая граница: =78-НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)= 74,864
Правая граница: =78+НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)=81,136

Левая граница: =НОРМ.ОБР(0,05/2; 78; 8/КОРЕНЬ(25))
Правая граница: =НОРМ.ОБР(1-0,05/2; 78; 8/КОРЕНЬ(25))

Ответ : доверительный интервал при уровне доверия 95% и σ =8 мсек равен 78+/-3,136 мсек.

В файле примера на листе Сигма известна создана форма для расчета и построения двухстороннего доверительного интервала для произвольных выборок с заданным σ и уровнем значимости .

Функция ДОВЕРИТ.НОРМ()

Если значения выборки находятся в диапазоне B20:B79 , а уровень значимости равен 0,05; то формула MS EXCEL:
=СРЗНАЧ(B20:B79)-ДОВЕРИТ.НОРМ(0,05;σ; СЧЁТ(B20:B79))
вернет левую границу доверительного интервала .

Эту же границу можно вычислить с помощью формулы:
=СРЗНАЧ(B20:B79)-НОРМ.СТ.ОБР(1-0,05/2)*σ/КОРЕНЬ(СЧЁТ(B20:B79))

Примечание : Функция ДОВЕРИТ.НОРМ() появилась в MS EXCEL 2010. В более ранних версиях MS EXCEL использовалась функция ДОВЕРИТ() .

Построение доверительного интервала для дисперсии нормально распределенной генеральной совокупности основывается на том, что случайная величина:

имеет c 2 -распределение Пирсона c n=n –1 степенями свободы. Зададим доверительную вероятность g и определим числа и из условия

Числа и , удовлетворяющие этому условию, можно выбрать бесчисленным числом способов. Один из способов состоит в следующем

и .

Значения чисел и определяются из таблиц для распределения Пирсона. После этого образуем неравенство

В результате получаем следующую интервальную оценку дисперсии генеральной совокупности:

. (3.25)

Иногда это выражение записывают в виде

, (3.26)

, (3.27)

где для коэффициентов и составляют специальные таблицы.

Пример 3.10. На фабрике работает автоматическая линия по фасовке растворимого кофе в жестяные 100-граммовые банки. Если средняя масса наполняемых банок отличается от точной, то линии налаживается для подгонки средней массы в рабочем режиме. Если дисперсия массы превышает заданное значение, то линия должна быть остановлена на ремонт и переналадку. Время от времени производится отбор банок с кофе для проверки средней массы и ее колеблемости. Предположим, что с линии в случайном порядке производится отбор банок с кофе и оценка дисперсии s 2 =18,540. Постройте 95%-й доверительный интервал для генеральной дисперсии s 2 .

Решение. Предполагая, что генеральная совокупность имеет нормальное распределение, воспользуемся формулой (3.26). По условию задачи уровень значимости a=0,05 и a/2=0,025. По таблицам для c 2 -распределение Пирсона с n=n –1=29 степенями свободы находим

и .

Тогда доверительный интервал для s 2 можно записать в виде

,

.

Для средне квадратичного отклонения ответ будет иметь вид

. â

Проверка статистических гипотез

Основные понятия

Большинство эконометрических моделей требует многократного улучшения и уточнения. Для этого необходимо проведение соответствующих расчетов, связанных с установлением выполнимости или невыполнимости тех или иных предпосылок, анализом качества найденных оценок, достоверностью полученных выводов. Поэтому знание основных принципов проверки гипотез является обязательным в эконометрике.



Во многих случаях необходимо знать закон распределения генеральной совокупности. Если закон распределения неизвестен, но есть основания предположить, что он имеет определенный вид, то выдвигают гипотезу: генеральная совокупность распределена по этому закону. Например, можно выдвинуть предположение, что доход населения, ежедневное количество покупателей в магазине, размер выпускаемых деталей имеют нормальный закон распределения.

Возможен случай, когда закон распределения известен, а его параметры нет. Если есть основания предположить, что неизвестный параметр q равен ожидаемому числу q 0 , то выдвигают гипотезу: q=q 0 . Например, можно выдвинуть предположение о величине среднего дохода населения, среднего ожидаемого дохода по акциям, о разбросе в доходах и т.д.

Под статистической гипотезой H понимают любое предположение о генеральной совокупности (случайной величине), проверяемое по выборке. Это может быть предположение о виде распределения генеральной совокупности, о равенстве двух выборочных дисперсий, о независимости выборок, об однородности выборок, т.е. что закон распределения не меняется от выборки к выборке и др.

Гипотеза называется простой , если она однозначно определяет какое-либо распределение или какой-либо параметр; в противном случае гипотеза называется сложной . Например, простой гипотезой является предположение о том, что случайная величина X распределена по стандартному нормальному закону N (0;1); если же высказывается предположение, что случайная величина X имеет нормальной распределение N (m ;1), где a £m £b , то это сложная гипотеза.

Проверяемая гипотеза называется основной или нулевой гипотезой и обозначается символом H 0 . Наряду с основной гипотезой рассматривают и противоречащую ей гипотезу, которую обычно называют конкурирующей или альтернативной гипотезой и обозначают символом H 1 . Если основная гипотеза будет отвергнута, то имеет место альтернативная гипотеза. Например, если проверяется гипотеза о равенства параметра q некоторому заданному значению q 0 , т.е. H 0:q=q 0 , то в качестве альтернативной гипотезы можно рассмотреть одну из следующих гипотез: H 1:q>q 0 , H 2:qH 3:q¹q 0 , H 4:q=q 1 . Выбор альтернативной гипотезы определяется конкретной формулировкой задачи.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверка осуществляется статистическими методами, то в связи с этим с определенной долей вероятности может быть принято неправильное решение. Здесь могут быть допущены ошибки двух видов. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Вероятность ошибки первого рода обозначают буквой a, т.е.

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Вероятность ошибки второго рода обозначают буквой b, т.е.

Последствия указанных ошибок неравнозначны. Первая приводит к более осторожному, консервативному решению, вторая – к неоправданному риску. Что лучше или хуже – зависит от конкретной постановки задачи и содержания нулевой гипотезы. Например, если H 0 состоит в признании продукции предприятия качественной и допущена ошибка первого рода, то будет забракована годная продукция. Допустив ошибку второго рода, мы отправим потребителю брак. Очевидно, последствия этой ошибки более серьезны с точки зрения имиджа фирмы и ее долгосрочных перспектив.

Исключить ошибки первого и второго рода невозможно в силу ограниченности выборки. Поэтому стремятся минимизировать потери от этих ошибок. Отметим, что одновременное уменьшение вероятностей данных ошибок невозможно, т.к. задачи их уменьшения являются конкурирующими. И снижение вероятности допустить одну из них влечет за собой увеличение вероятности допустить другую. В большинстве случаев единственный способ уменьшения обеих вероятностей состоит в увеличении объема выборки.

Правило, в соответствие с которым принимается или отклоняется основная гипотеза, называется статистическим критерием . Для этого подбирается такая случайная величина K, распределение которой точно или приближенно, известно и которая служит мерой расхождения между опытными и гипотетическими значениями.

Для проверки гипотезы по данным выборки вычисляют выборочное (или наблюдаемое ) значение критерия K набл . Затем, в соответствии с распределением выбранного критерия, строится критическая область K крит . Это такая совокупность значений критерия, при которых нулевую гипотезу отвергают. Оставшуюся часть возможных значений называют областью принятия гипотезы . Если ориентироваться на критическую область, то можно совершить ошибку
1-го рода, вероятность которой задана заранее и равна a, называемой уровнем значимости гипотезы. Отсюда вытекает следующее требование к критической области K крит :

.



Уровень значимости a определяет "размер" критической области K крит . Однако ее положение на множестве значений критерия зависит от вида альтернативной гипотезы. Например, если проверяется нулевая гипотеза H 0:q=q 0 , а альтернативная гипотеза имеет вид H 1:q>q 0 , то критическая область будет состоять из интервала (K 2 , +¥), где точка K 2 определяется из условия P (K>K 2)=a (правосторонняя критическая область H 2:qP (Kлевосторонняя критическая область ). Если альтернативная гипотеза имеет вид H 3:q¹q 0 , то критическая область будет состоять из двух интервалов (–¥;K 1) и (K 2 , +¥), где точки K 1 и K 2 определяются из условий: P (K>K 2)=a/2 и P (Kдвухсторонняя критическая область ).

Основной принцип проверки статистических гипотез можно сформулировать следующим образом. Если K набл попадает в критическую область, то гипотеза H 0 отвергается и принимается гипотеза H 1 . Однако поступая таким образом, следует понимать, что здесь можно допустить ошибку 1-го рода с вероятностью a. Если K набл попадает в область принятия гипотезы – то нет оснований, чтобы отвергать нулевую гипотезу H 0 . Но это вовсе не означает, что H 0 является единственно подходящей гипотезой: просто расхождения между выборочными данными и гипотезой H 0 невелико; однако таким же свойством могут обладать и другие гипотезы.

Мощностью критерия называется вероятность того, что нулевая гипотеза будет отвергнута, если верна альтернативная гипотеза; т.е. мощность критерия равна 1–b, где b – вероятность совершить ошибку 2-го рода. Пусть для проверки гипотезы принят определенный уровень значимости a и выборка имеет фиксированный объем. Поскольку в выборе критической области есть определенный произвол, то ее целесообразно строить так, чтобы мощность критерия была максимальной или чтобы вероятность ошибки 2-го рода была минимальной.

Критерии, используемые для проверки гипотез о параметрах распределения, называются критериями значимости . В частности, построение критической области аналогично построению доверительного интервала. Критерии, используемые для проверки согласия между выборочным распределением и гипотетическим теоретическим распределением, называются критериями согласия .

Доверительный интервал – предельные значения статистической величины, которая с заданной доверительной вероятностью γ будет находится в этом интервале при выборке большего объема. Обозначается как P(θ - ε . На практике выбирают доверительную вероятность γ из достаточно близких к единице значений γ = 0.9 , γ = 0.95 , γ = 0.99 .

Назначение сервиса . С помощью этого сервиса определяются:

  • доверительный интервал для генерального среднего, доверительный интервал для дисперсии;
  • доверительный интервал для среднего квадратического отклонения, доверительный интервал для генеральной доли;
Полученное решение сохраняется в файле Word (см. пример). Ниже представлена видеоинструкция, как заполнять исходные данные.

Пример №1 . В колхозе из общего стада в 1000 голов овец выборочной контрольной стрижке подверглись 100 овец. В результате был установлен средний настриг шерсти 4,2 кг на одну овцу. Определить с вероятностью 0,99 среднюю квадратическую ошибку выборки при определении среднего настрига шерсти на одну овцу и пределы, в которых заключена величина настрига, если дисперсия равна 2,5 . Выборка бесповторная.
Пример №2 . Из партии импортируемой продукции на посту Московской Северной таможни было взято в порядке случайной повторной выборки 20 проб продукта «А». В результате проверки установлена средняя влажность продукта «А» в выборке, которая оказалась равной 6 % при среднем квадратическом отклонении 1 %.
Определите с вероятностью 0,683 пределы средней влажности продукта во всей партии импортируемой продукции.
Пример №3 . Опрос 36 студентов показал, что среднее количество учебников, прочитанных ими за учебный год, оказалось равным 6. Считая, что количество учебников, прочитанных студентом за семестр, имеет нормальный закон распределения со средним квадратическим отклонением, равным 6, найти: А) с надежностью 0,99 интервальную оценку для математического ожидания этой случайной величины; Б) с какой вероятностью можно утверждать, что среднее количество учебников, прочитанных студентом за семестр, вычисленное по данной выборке, отклонится от математического ожидания по абсолютной величине не больше, чем на 2.

Классификация доверительных интервалов

По виду оцениваемого параметра:

По типу выборки:

  1. Доверительный интервал для бесконечной выборки;
  2. Доверительный интервал для конечной выборки;
Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. На практике обычно имеют дело с бесповторными выборками.

Расчет средней ошибки выборки при случайном отборе

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности .
Обозначения основных параметров генеральной и выборочной совокупности.
Формулы средней ошибки выборки
повторный отбор бесповторный отбор
для средней для доли для средней для доли
Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или Δ = t·μ, где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t) по таблице интегральной функции Лапласа.

Формулы расчета численности выборки при собственно-случайном способе отбора