Как составить матрицу парных коэффициентов корреляции. Матрица парной корреляции

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х ; оценить статистическую значимость коэффициентов корреляции r (Y , X i); выбрать наиболее информативный фактор.

2. Построить модель парной регрессии с наиболее информативным фактором; дать экономическую интерпретацию коэффициента регрессии.

3. Оценить качество модели с помощью средней относительной ошибки аппроксимации, коэффициента детерминации и F – критерия Фишера (принять уровень значимости α=0,05).

4. С доверительной вероятностью γ=80% осуществить прогнозирование среднего значения показателя Y (прогнозные значения факторов приведены в Приложении 6). Представить графически фактические и модельные значения Y , результаты прогнозирования.

5. Методом включения построить двухфакторные модели, сохраняя в них наиболее информативный фактор; построить трехфакторную модель с полным перечнем факторов.

6. Выбрать лучшую из построенных множественных моделей. Дать экономическую интерпретацию ее коэффициентов.

7. Проверить значимость коэффициентов множественной регрессии с помощью t –критерия Стьюдента (принять уровень значимости α=0,05). Улучшилось ли качество множественной модели по сравнению с парной?

8. Дать оценку влияния факторов на результат с помощью коэффициентов эластичности, бета– и дельта– коэффициентов.

Задача 2. Моделирование одномерного временного ряда

В Приложении 7 приведены временные ряды Y(t) социально-экономических показателей по Алтайскому краю за период с 2000 г. по 2011 г. Требуется исследовать динамику показателя, соответствующего варианту задания.

Вариант Обозначение, наименование, единица измерения показателя
Y1 Потребительские расходы в среднем на душу населения (в месяц), руб.
Y2 Выбросы загрязняющих веществ в атмосферный воздух, тыс. тонн
Y3 Средние цены на вторичном рынке жилья (на конец года, за квадратный метр общей площади), руб
Y4 Объем платных услуг на душу населения, руб
Y5 Среднегодовая численность занятых в экономике, тыс. человек
Y6 Число собственных легковых автомобилей на 1000 человек населения (на конец года), штук
Y7 Среднедушевые денежные доходы (в месяц), руб
Y8 Индекс потребительских цен (декабрь к декабрю предыдущего года), %
Y9 Инвестиции в основной капитал (в фактически действовавших ценах), млн. руб
Y10 Оборот розничной торговли на душу населения (в фактически действовавших ценах), руб


Порядок выполнения работы

1. Построить линейную модель временного ряда , параметры которой оценить МНК. Пояснить смысл коэффициента регрессии.

2. Оценить адекватность построенной модели, используя свойства случайности, независимости и соответствия остаточной компоненты нормальному закону распределения.

3. Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

4. Осуществить прогнозирование рассматриваемого показателя на год вперед (прогнозный интервал рассчитать при доверительной вероятности 70%).

5. Представить графически фактические значения показателя, результаты моделирования и прогнозирования.

6. Провести расчет параметров логарифмического, полиномиального (полином 2-й степени), степенного, экспоненциального и гиперболического трендов. На основании графического изображения и значения индекса детерминации выбрать наиболее подходящий вид тренда.

7. С помощью лучшей нелинейной модели осуществить точечное прогнозирование рассматриваемого показателя на год вперед. Сопоставить полученный результат с доверительным прогнозным интервалом, построенным при использовании линейной модели.

ПРИМЕР

Выполнения контрольной работы

Задача 1

Фирма занимается реализацией подержанных автомобилей. Наименования показателей и исходные данные для эконометрического моделирования представлены в таблице:

Цена реализации, тыс.у.е. (Y ) Цена нового авт., тыс.у.е. (Х1 ) Срок эксплуатации, годы (Х2 ) Левый руль - 1, правый руль - 0, (Х3 )
8,33 13,99 3,8
10,40 19,05 2,4
10,60 17,36 4,5
16,58 25,00 3,5
20,94 25,45 3,0
19,13 31,81 3,5
13,88 22,53 3,0
8,80 16,24 5,0
13,89 16,54 2,0
11,03 19,04 4,5
14,88 22,61 4,6
20,43 27,56 4,0
14,80 22,51 3,3
26,05 31,75 2,3

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х; оценить статистическую значимость коэффициентов корреляции r(Y, X i); выбрать наиболее информативный фактор.

Используем Excel (Данные / Анализ данных / КОРРЕЛЯЦИЯ):

Получим матрицу коэффициентов парной корреляции между всеми имеющимися переменными:

У Х1 Х2 Х3
У
Х1 0,910987
Х2 -0,4156 -0,2603
Х3 0,190785 0,221927 -0,30308

Проанализируем коэффициенты корреляции между результирующим признаком Y и каждым из факторов X j:

> 0, следовательно, между переменными Y и Х 1 наблюдается прямая корреляционная зависимость: чем выше цена нового автомобиля, тем выше цена реализации.

> 0,7 – эта зависимость является тесной.

< 0, значит, между переменными Y и Х 2 наблюдается

обратная корреляционная зависимость: цена реализации ниже для авто-

мобилей с большим сроком эксплуатации.

– эта зависимость умеренная, ближе к слабой.

> 0, значит, между переменными Y и Х 3 наблюдается прямая корреляционная зависимость: цена реализации выше для автомобилей с левым рулем.

< 0,4 – эта зависимость слабая.

Для проверки значимости найденных коэффициентов корреляции используем критерий Стьюдента.

Для каждого коэффициента корреляции вычислим t -статистику по формуле и занесем результаты расчетов в дополнительный столбец корреляционной таблицы:

У Х1 Х2 Х3 t-статистики
У
Х1 0,910987 7,651524603
Х2 -0,4156 -0,2603 1,582847988
Х3 0,190785 0,221927 -0,30308 0,673265587

По таблице критических точек распределения Стъюдента при уровне значимости и числе степеней свободы определим критическое значение (Приложение 1, или функция СТЬЮДРАСПОБР).Y и сроком эксплуатации Х 2 достоверна.

< , следовательно, коэффициент не является значимым. На основании выборочных данных нет оснований утверждать, что зависимость между ценой реализации Y и расположением руля Х 3 достоверна.

Таким образом, наиболее тесная и значимая зависимость наблюдается между ценой реализации Y и ценой нового автомобиля Х 1 ; фактор Х 1 является наиболее информативным.

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Мозамбик

……………………………………………………………………………………..

Швейцария

Принятые в таблице обозначения:

· Y -- средняя ожидаемая продолжительность жизни при рождении, лет;

· X 1 -- ВВП в паритетах покупательной способности;

· X 2 -- цепные темпы прироста населения, %;

· X 3 -- цепные темпы прироста рабочей силы, %;

· Х 4 -- коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 -- 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .

6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1. С помощью надстройки «Анализ данных… Корреляция» строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис» «Анализ данных…» «Корреляция»). На рис. 1 изображена панель корреляционного анализа с заполненными полямиДля копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen (на некоторых клавиатурах -- Alt+PrtSc).. Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1.

рис. 1. Панель корреляционного анализа

Таблица 1

Матрица парных коэффициентов корреляции

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2 -Х 3 (выделен жирным шрифтом). Факторы Х 2 -Х 3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х2-Х3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х2 имеет больший по модулю коэффициент корреляции с результатом Y, чем фактор Х3: ry,x2=0,72516; ry,x3=0,53397; |ry,x2|>|ry,x3| (см. табл. 1). Это свидетельствует о более сильном влиянии фактора Х2 на изменение Y. Фактор Х3, таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y , X 1 , X 2 , X 4) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» «Анализ данных… » «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» в табл. 2 ):

y = 75.44 + 0.0447 ? x 1 - 0.0453 ? x 2 - 0.24 ? x 4

Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571?10 -45 (см. «Значимость F» в табл. 2 ), что существенно ниже принятого уровня значимости =0,05.

Вероятность случайного формирования коэффициентов при факторе Х 1 ниже принятого уровня значимости =0,05 (см. «P-Значение» в табл. 2 ), что свидетельствует о статистической значимости коэффициентов и существенном влиянии этих факторов на изменение годовой прибыли Y .

Вероятность случайного формирования коэффициентов при факторах Х 2 и Х 4 превышает принятый уровень значимости =0,05 (см. «P-Значение» в табл. 2 ), и эти коэффициенты не признаются статистически значимыми.

рис. 2. Панель регрессионного анализа модели Y (X 1 ,X 2 ,X 4 )

Таблица 2

Y (X 1 , X 2 , X 4 )

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

3. По результатам проверки статистической значимости коэффициентов уравнения регрессии, проведенной в предыдущем пункте, строим новую регрессионную модель, содержащую только информативные факторы, к которым относятся:

· факторы, коэффициенты при которых статистически значимы;

· факторы, у коэффициентов которых t _статистика превышает по модулю единицу (другими словами, абсолютная величина коэффициента больше его стандартной ошибки).

К первой группе относится фактор Х 1 ко второй -- фактор X 4 . Фактор X 2 исключается из рассмотрения как неинформативный, и окончательно регрессионная модель будет содержать факторы X 1 , X 4 .

Для построения уравнения регрессии скопируем на чистый рабочий лист значения используемых переменных (прил. 5) и проведем регрессионный анализ (рис. 3 ). Его результаты приведены в прил. 6 и перенесены в табл. 3 . Уравнение регрессии имеет вид:

y = 75.38278 + 0.044918 ? x 1 - 0.24031 ? x 4

(см. «Коэффициенты» в табл.3 ).

рис. 3. Панель регрессионного анализа модели Y (X 1 , X 4 )

Таблица 3

Результаты регрессионного анализа модели Y (X 1 , X 4 )

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

Уравнение регрессии статистически значимо: вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «Значимость F» в табл.3 ).

Статистически значимым признается и коэффициент при факторе Х 1 вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «P-Значение» в табл. 3 ). Это свидетельствует о существенном влиянии ВВП в паритетах покупательной способности X 1 на изменение годовой прибыли Y .

Коэффициент при факторе Х 4 (годовой коэффициент младенческой смертности) не является статистически значимым. Однако этот фактор все же можно считать информативным, так как t _статистика его коэффициента превышает по модулю единицу, хотя к дальнейшим выводам относительно фактора Х 4 следует относиться с некоторой долей осторожности.

4. Оценим качество и точность последнего уравнения регрессии, используя некоторые статистические характеристики, полученные в ходе регрессионного анализа (см. «Регрессионную статистику» в табл. 3):

· множественный коэффициент детерминации

R 2 = _ i=1 ____________ =0.946576

R 2 = показывает, что регрессионная модель объясняет 94,7 % вариации средней ожидаемой продолжительности жизни при рождении Y , причем эта вариация обусловлена изменением включенных в модель регрессии факторов X 1 , X 4 ;

· стандартная ошибка регрессии

показывает, что предсказанные уравнением регрессии значения средней ожидаемой продолжительности жизни при рождении Y отличаются от фактических значений в среднем на 2,252208 лет.

Средняя относительная ошибка аппроксимации определяется по приближенной формуле:

E отн?0,8 ? -- ? 100%=0.8 ? 2.252208/66.9 ? 100%?2.7

где тыс. руб. -- среднее значение продолжительности жизни (определено с помощью встроенной функции «СРЗНАЧ »; прил. 1 ).

Е отн показывает, что предсказанные уравнением регрессии значения годовой прибыли Y отличаются от фактических значений в среднем на 2,7 %. Модель имеет высокую точность (при -- точность модели высокая, при -- хорошая, при -- удовлетворительная, при -- неудовлетворительная).

5. Для экономической интерпретации коэффициентов уравнения регрессии сведем в таблицу средние значения и стандартные отклонения переменных в исходных данных (табл. 4). Средние значения были определены с помощью встроенной функции «СРЗНАЧ», стандартные отклонения -- с помощью встроенной функции «СТАНДОТКЛОН» (см. прил. 1).

Коэффициент корреляции отражает степень взаимосвязи между двумя показателями. Всегда принимает значение от -1 до 1. Если коэффициент расположился около 0, то говорят об отсутствии связи между переменными.

Если значение близко к единице (от 0,9, например), то между наблюдаемыми объектами существует сильная прямая взаимосвязь. Если коэффициент близок к другой крайней точке диапазона (-1), то между переменными имеется сильная обратная взаимосвязь. Когда значение находится где-то посередине от 0 до 1 или от 0 до -1, то речь идет о слабой связи (прямой или обратной). Такую взаимосвязь обычно не учитывают: считается, что ее нет.

Расчет коэффициента корреляции в Excel

Рассмотрим на примере способы расчета коэффициента корреляции, особенности прямой и обратной взаимосвязи между переменными.

Значения показателей x и y:

Y – независимая переменная, x – зависимая. Необходимо найти силу (сильная / слабая) и направление (прямая / обратная) связи между ними. Формула коэффициента корреляции выглядит так:


Чтобы упростить ее понимание, разобьем на несколько несложных элементов.

Между переменными определяется сильная прямая связь.

Встроенная функция КОРРЕЛ позволяет избежать сложных расчетов. Рассчитаем коэффициент парной корреляции в Excel с ее помощью. Вызываем мастер функций. Находим нужную. Аргументы функции – массив значений y и массив значений х:

Покажем значения переменных на графике:


Видна сильная связь между y и х, т.к. линии идут практически параллельно друг другу. Взаимосвязь прямая: растет y – растет х, уменьшается y – уменьшается х.



Матрица парных коэффициентов корреляции в Excel

Корреляционная матрица представляет собой таблицу, на пересечении строк и столбцов которой находятся коэффициенты корреляции между соответствующими значениями. Имеет смысл ее строить для нескольких переменных.

Матрица коэффициентов корреляции в Excel строится с помощью инструмента «Корреляция» из пакета «Анализ данных».


Между значениями y и х1 обнаружена сильная прямая взаимосвязь. Между х1 и х2 имеется сильная обратная связь. Связь со значениями в столбце х3 практически отсутствует.

Множественная регрессия не является результатом преобразования уравнения:

-
;

-
.

Линеаризация подразумевает процедуру …

- приведения уравнения множественной регрессии к парной;

+ приведения нелинейного уравнения к линейному виду;

- приведения линейного уравнения к нелинейному виду;

- приведения нелинейного уравнения относительно параметров к уравнению, линейному относительно результата.

Остатки не изменяются;

Уменьшается количество наблюдений

В стандартизованном уравнении множественной регрессии переменными являются:

Исходные переменные;

Стандартизованные параметры;

Средние значения исходных переменных;

Стандартизованные переменные.

Одним из методов присвоения числовых значений фиктивным переменным является. . .

+– ранжирование;

Выравнивание числовых значений по возрастанию;

Выравнивание числовых значений по убыванию;

Нахождение среднего значения.

В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между. . . .

Переменными;

Параметрами;

Параметрами и переменными;

Переменными и случайными факторами.

Метод оценки параметров моделей с гетероскедастичными остатками называется ____________ методом наименьших квадратов:

Обычным;

Косвенным;

Обобщенным;

Минимальным.

Дано уравнение регрессии . Определите спецификацию модели.

Полиномиальное уравнение парной регрессии;

Линейное уравнение простой регрессии;

Полиномиальное уравнение множественной регрессии;

Линейное уравнение множественной регрессии.

В стандартизованном уравнении свободный член ….

Равен 1;

Равен коэффициенту множественной детерминации;

Равен коэффициенту множественной корреляции;

Отсутствует.

В качестве фиктивных переменных в модель множественной регрессии включаются факторы,

Имеющие вероятностные значения;

Имеющие количественные значения;

Не имеющие качественных значений;

Не имеющие количественных значений.

Факторы эконометрической модели являются коллинеарными, если коэффициент …

Корреляции между ними по модулю больше 0,7;

Детерминации между ними по модулю больше 0,7;

Детерминации между ними по модулю меньше 0,7;

Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК …

Преобразуются исходные уровни переменных;

Остатки не изменяются;

Остатки приравниваются к нулю;

Уменьшается количество наблюдений.

Объем выборки определяется …

Числовыми значением переменных, отбираемых в выборку;

Объемом генеральной совокупности;

Числом параметров при независимых переменных;

Числом результативных переменных.

11. Множественная регрессия не является результатом преобразования уравнения:

+-
;

-
;

-
.

Исходные значения фиктивных переменных предполагают значения …

Качественные;

Количественно измеримые;

Одинаковые;

Значения.

Обобщенный метод наименьших квадратов подразумевает …

Преобразование переменных;

Переход от множественной регрессии к парной;

Линеаризацию уравнения регрессии;

Двухэтапное применение метода наименьших квадратов.

Линейное уравнение множественной регрессии имеет вид . Определите какой из факторовили:

+- , так как 3,7>2,5;

Оказывают одинаковое влияние;

- , так как 2,5>-3,7;

По этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой.

Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является …

Нулевым;

Незначимым;

Существенным;

Несущественным.

Что преобразуется при применении обобщенного метода наименьших квадратов?

Стандартизованные коэффициенты регрессии;

Дисперсия результативного признака;

Исходные уровни переменных;

Дисперсия факторного признака.

Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника.

Возраст;

Уровень образования;

Заработная плата.

Переход от точечного оценивания к интервальному возможен, если оценки являются:

Эффективными и несостоятельными;

Неэффективными и состоятельными;

Эффективными и несмещенными;

Состоятельными и смещенными.

Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

Параметров;

Случайных факторов;

Существенных факторов;

Результатов.

На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой:

Взвешенную регрессию, в которой переменные взяты с весами
;

;

Нелинейную регрессию, в которой переменные взяты с весами
;

Взвешенную регрессию, в которой переменные взяты с весами .

Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения …

Отвергается;

Незначима;

Принимается;

Несущественна.

Если факторы входят в модель как произведение, то модель называется:

Суммарной;

Производной;

Аддитивной;

Мультипликативной.

Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется:

Множественным;

Существенным;

Частным;

Несущественным.

Относительно количества факторов, включенных в уравнение регрессии, различают …

Линейную и нелинейную регрессии;

Непосредственную и косвенную регрессии;

Простую и множественную регрессию;

Множественную и многофакторную регрессию.

Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:

Равенство нулю значений факторного признака4

Нелинейность параметров;

Равенство нулю средних значений результативной переменной;

Линейность параметров.

Метод наименьших квадратов не применим для …

Линейных уравнений парной регрессии;

Полиномиальных уравнений множественной регрессии;

Уравнений, нелинейных по оцениваемым параметрам;

Линейных уравнений множественной регрессии.

При включении фиктивных переменных в модель им присваиваются …

Нулевые значения;

Числовые метки;

Одинаковые значения;

Качественные метки.

Если между экономическими показателями существует нелинейная связь, то …

Нецелесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию линейного уравнение парной регрессии;

Необходимо включить в модель другие факторы и использовать линейное уравнение множественной регрессии.

Результатом линеаризации полиномиальных уравнений является …

Нелинейные уравнения парной регрессии;

Линейные уравнения парной регрессии;

Нелинейные уравнения множественной регрессии;

Линейные уравнения множественной регрессии.

В стандартизованном уравнении множественной регрессии
0,3;
-2,1. Определите, какой из факторовилиоказывает более сильное влияние на:

+- , так как 2,1>0,3;

По этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии;

- , так как 0,3>-2,1;

По этому уравнению нельзя ответить на поставленный вопрос, так как стандартизированные коэффициенты несравнимы между собой.

Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

Аномальными;

Множественными;

Парными;

Фиктивными.

Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода:

Средних квадратов;

Наибольших квадратов;

Нормальных квадратов;

Наименьших квадратов.

Основным требованием к факторам, включаемым в модель множественной регрессии, является:

Отсутствие взаимосвязи между результатом и фактором;

Отсутствие взаимосвязи между факторами;

Отсутствие линейной взаимосвязи между факторами;

Наличие тесной взаимосвязи между факторами.

Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

Качественного характера;

Количественного характера;

Несущественного характера;

Случайного характера.

Из пары коллинеарных факторов в эконометрическую модель включается тот фактор,

Который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами;

Который при отсутствии связи с результатом имеет максимальную связь с другими факторами;

Который при отсутствии связи с результатом имеет наименьшую связь с другими факторами;

Который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами.

Гетероскедастичность подразумевает …

Постоянство дисперсии остатков независимо от значения фактора;

Зависимость математического ожидания остатков от значения фактора;

Зависимость дисперсии остатков от значения фактора;

Независимость математического ожидания остатков от значения фактора.

Величина остаточной дисперсии при включении существенного фактора в модель:

Не изменится;

Будет увеличиваться;

Будет равно нулю;

Будет уменьшаться.

Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение …

Регрессии;

Детерминации;

Корреляции;

Аппроксимации.

Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент …

Корреляции;

Эластичности;

Регрессии;

Детерминации.

Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________потребителя.

Семейное положение;

Уровень образования;

Для существенного параметра расчетное значение критерия Стьюдента …

Больше табличного значения критерия;

Равно нулю;

Не больше табличного значения критерия Стьюдента;

Меньше табличного значения критерия.

Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

Методом скользящего среднего;

Методом определителей;

Методом первых разностей;

Симплекс-методом.

Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов, называется ____________коэффициентом регрессии

Стандартизованным;

Нормализованным;

Выровненным;

Центрированным.

Мультиколлинеарность факторов эконометрической модели подразумевает …

Наличие нелинейной зависимости между двумя факторами;

Наличие линейной зависимости между более чем двумя факторами;

Отсутствие зависимости между факторами;

Наличие линейной зависимости между двумя факторами.

Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками.

Автокоррелированными и гетероскедастичными;

Гомоскедастичными;

Гетероскедастичными;

Автокоррелированными.

Методом присвоения числовых значений фиктивным переменным не является:

Ранжирование;

Присвоение цифровых меток;

Нахождения среднего значения;

Присвоение количественных значений.

Нормально распределенных остатков;

Гомоскедастичных остатков;

Автокорреляции остатков;

Автокорреляции результативного признака.

Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

Общей дисперсии до и после включения фактора в модель;

Остаточной дисперсии до и после включения случайных факторов в модель;

Дисперсии до и после включения результата в модель;

Остаточной дисперсии до и после включения фактора модель.

Обобщенный метод наименьших квадратов используется для корректировки …

Параметров нелинейного уравнения регрессии;

Точности определения коэффициента множественной корреляции;

Автокорреляции между независимыми переменными;

Гетероскедастичности остатков в уравнении регрессии.

После применения обобщенного метода наименьших квадратов удается избежать_________ остатков

Гетероскедастичности;

Нормального распределения;

Равенства нулю суммы;

Случайного характера.

Фиктивные переменные включаются в уравнения ____________регрессии

Случайной;

Парной;

Косвенной;

Множественной.

Взаимодействие факторов эконометрической модели означает, что …

Влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора;

Влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов;

Факторы дублируют влияние друг друга на результат;

Влияние одного из факторов на результирующий признак не зависит от значений другого фактора.

Тема Множественная регрессия (Задачи)

Уравнение регрессии, построенное по 15 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для

с вероятностью 0,99 равны:

Уравнение регрессии, построенное по 20 наблюдениям, имеет вид:

с вероятностью 0,9 равны:

Уравнение регрессии, построенное по 16 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,99 равны:

Уравнение регрессии в стандартизированном виде имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

По 18 наблюдениям получены следующие данные:

;
;
;
;

равны:

По 17 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 22 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 25 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 24 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 28 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 26 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

В уравнении регрессии:

Восстановить пропущенные характеристики; построить доверительный интервал для с вероятностью 0,95, еслиn=12

Матрица парных коэффициентов корреляции представляет собой матрицу, элементами которой являются парные коэффициенты корреляции. Например, для трех переменных эта матрица имеет вид:
- y x 1 x 2 x 3
y 1 r yx1 r yx2 r yx3
x 1 r x1y 1 r x1x2 r x1x3
x 2 r x2y r x2x1 1 r x2x3
x 3 r x3y r x3x1 r x3x2 1

Вставьте в поле матрицу парных коэффициентов.

Пример . По данным 154 сельскохозяйственных предприятий Кемеровской области 2003 г. изучить эффективность производства зерновых (табл. 13).

  1. Определите факторы, формирующие рентабельность зерновых в сельскохозяйственных предприятий в 2003 г.
  2. Постройте матрицу парных коэффициентов корреляции. Установите, какие факторы мультиколлинеарны.
  3. Постройте уравнение регрессии, характеризующее зависимость рентабельности зерновых от всех факторов.
  4. Оцените значимость полученного уравнения регрессии. Какие факторы значимо воздействуют на формирование рентабельности зерновых в этой модели?
  5. Оцените значение рентабельности производства зерновых в сельскохозяйственном предприятии № 3.

Решение получаем с помощью калькулятора Уравнение множественной регрессии :

1. Оценка уравнения регрессии.
Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X

1 0.43 2.02 0.29
1 0.87 1.29 0.55
1 1.01 1.09 0.7
1 0.63 1.68 0.41
1 0.52 0.3 0.37
1 0.44 1.98 0.3
1 1.52 0.87 1.03
1 2.19 0.8 1.3
1 1.8 0.81 1.17
1 1.57 0.84 1.06
1 0.94 1.16 0.64
1 0.72 1.52 0.44
1 0.73 1.47 0.46
1 0.77 1.41 0.49
1 1.21 0.97 0.88
1 1.25 0.93 0.91
1 1.31 0.91 0.94
1 0.38 2.08 0.27
1 0.41 2.05 0.28
1 0.48 1.9 0.32
1 0.58 1.73 0.38
1 0 0 0

Матрица Y
0.22
0.67
0.79
0.42
0.32
0.24
0.95
1.05
0.99
0.96
0.73
0.52
2.1
0.58
0.87
0.89
0.91
0.14
0.18
0.27
0.37
0

Матрица X T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.43 0.87 1.01 0.63 0.52 0.44 1.52 2.19 1.8 1.57 0.94 0.72 0.73 0.77 1.21 1.25 1.31 0.38 0.41 0.48 0.58 0
2.02 1.29 1.09 1.68 0.3 1.98 0.87 0.8 0.81 0.84 1.16 1.52 1.47 1.41 0.97 0.93 0.91 2.08 2.05 1.9 1.73 0
0.29 0.55 0.7 0.41 0.37 0.3 1.03 1.3 1.17 1.06 0.64 0.44 0.46 0.49 0.88 0.91 0.94 0.27 0.28 0.32 0.38 0

Умножаем матрицы, (X T X)
Находим определитель det(X T X) T = 34.35
Находим обратную матрицу (X T X) -1
0.6821 0.3795 -0.2934 -1.0118
0.3795 9.4402 -0.133 -14.4949
-0.2934 -0.133 0.1746 0.3204
-1.0118 -14.4949 0.3204 22.7272

Вектор оценок коэффициентов регрессии равен
s = (X T X) -1 X T Y =
0.1565
0.3375
0.0043
0.2986

Уравнение регрессии (оценка уравнения регрессии)
Y = 0.1565 + 0.3375X 1 + 0.0043X 2 + 0.2986X 3

Матрица парных коэффициентов корреляции

Число наблюдений n = 22. Число независимых переменных в модели ровно 3, а число регрессоров с учетом единичного вектора равно числу неизвестных коэффициентов. С учетом признака Y, размерность матрицы становится равным 5. Матрица, независимых переменных Х имеет размерность (22 х 5). Матрица Х T Х определяется непосредственным умножением или по следующим предварительно вычисленным суммам.
Матрица составленная из Y и X
1 0.22 0.43 2.02 0.29
1 0.67 0.87 1.29 0.55
1 0.79 1.01 1.09 0.7
1 0.42 0.63 1.68 0.41
1 0.32 0.52 0.3 0.37
1 0.24 0.44 1.98 0.3
1 0.95 1.52 0.87 1.03
1 1.05 2.19 0.8 1.3
1 0.99 1.8 0.81 1.17
1 0.96 1.57 0.84 1.06
1 0.73 0.94 1.16 0.64
1 0.52 0.72 1.52 0.44
1 2.1 0.73 1.47 0.46
1 0.58 0.77 1.41 0.49
1 0.87 1.21 0.97 0.88
1 0.89 1.25 0.93 0.91
1 0.91 1.31 0.91 0.94
1 0.14 0.38 2.08 0.27
1 0.18 0.41 2.05 0.28
1 0.27 0.48 1.9 0.32
1 0.37 0.58 1.73 0.38
1 0 0 0 0

Транспонированная матрица.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.22 0.67 0.79 0.42 0.32 0.24 0.95 1.05 0.99 0.96 0.73 0.52 2.1 0.58 0.87 0.89 0.91 0.14 0.18 0.27 0.37 0
0.43 0.87 1.01 0.63 0.52 0.44 1.52 2.19 1.8 1.57 0.94 0.72 0.73 0.77 1.21 1.25 1.31 0.38 0.41 0.48 0.58 0
2.02 1.29 1.09 1.68 0.3 1.98 0.87 0.8 0.81 0.84 1.16 1.52 1.47 1.41 0.97 0.93 0.91 2.08 2.05 1.9 1.73 0
0.29 0.55 0.7 0.41 0.37 0.3 1.03 1.3 1.17 1.06 0.64 0.44 0.46 0.49 0.88 0.91 0.94 0.27 0.28 0.32 0.38 0

Матрица A T A.
22 14.17 19.76 27.81 13.19
14.17 13.55 15.91 16.58 10.56
19.76 15.91 23.78 22.45 15.73
27.81 16.58 22.45 42.09 14.96
13.19 10.56 15.73 14.96 10.45

Полученная матрица имеет следующее соответствие:

Найдем парные коэффициенты корреляции.
Для y и x 1

Средние значения



Дисперсия





Коэффициент корреляции

Для y и x 2
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Для y и x 3
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Для x 1 и x 2
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Для x 1 и x 3
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Для x 2 и x 3
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Матрица парных коэффициентов корреляции.
- y x 1 x 2 x 3
y 1 0.62 -0.24 0.61
x 1 0.62 1 -0.39 0.99
x 2 -0.24 -0.39 1 -0.41
x 3 0.61 0.99 -0.41 1

Анализ первой строки этой матрицы позволяет произвести отбор факторных признаков, которые могут быть включены в модель множественной корреляционной зависимости. Факторные признаки, у которых r yxi < 0.5 исключают из модели.
Коллинеарность – зависимость между факторами. В качестве критерия мультиколлинеарности может быть принято соблюдение следующих неравенств:
r(x j y) > r(x k x j) ; r(x k y) > r(x k x j).
Если одно из неравенств не соблюдается, то исключается тот параметр x k или x j , связь которого с результативным показателем Y оказывается наименее тесной.
3. Анализ параметров уравнения регрессии.
Перейдем к статистическому анализу полученного уравнения регрессии: проверке значимости уравнения и его коэффициентов, исследованию абсолютных и относительных ошибок аппроксимации
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y - X*s (абсолютная ошибка аппроксимации)
-0.18
0.05
0.08
-0.08
-0.12
-0.16
-0.03
-0.24
-0.13
-0.05
0.06
-0.02
1.55
0.01
0.04
0.04
0.03
-0.23
-0.21
-0.15
-0.1
-0.16

s e 2 = (Y - X*s) T (Y - X*s)
Несмещенная оценка дисперсии равна

Оценка среднеквадратичного отклонения равна

Найдем оценку ковариационной матрицы вектора k = a*(X T X) -1
0.26 0.15 -0.11 -0.39
0.15 3.66 -0.05 -5.61
-0.11 -0.05 0.07 0.12
-0.39 -5.61 0.12 8.8

Дисперсии параметров модели определяются соотношением S 2 i = K ii , т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности , которые определяются по формуле:


Частные коэффициент эластичности E 1 < 1. Следовательно, его влияние на результативный признак Y незначительно.

Частные коэффициент эластичности E 2 < 1. Следовательно, его влияние на результативный признак Y незначительно.

Частные коэффициент эластичности E 3 < 1. Следовательно, его влияние на результативный признак Y незначительно.
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции (от 0 до 1)

Связь между признаком Y факторами X умеренная
Коэффициент детерминации
R 2 = 0.62 2 = 0.38
т.е. в 38.0855 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - средняя
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
T табл (n-m-1;a) = (18;0.05) = 1.734
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим
Интервальная оценка для коэффициента корреляции (доверительный интервал)

Доверительный интервал для коэффициента корреляции
r(0.3882;0.846)
5. Проверка гипотез относительно коэффициентов уравнения регрессии (проверка значимости параметров множественного уравнения регрессии).
1) t-статистика


Статистическая значимость коэффициента регрессии b 0 не подтверждается

Статистическая значимость коэффициента регрессии b 1 не подтверждается

Статистическая значимость коэффициента регрессии b 2 не подтверждается

Статистическая значимость коэффициента регрессии b 3 не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b i - t i S i ; b i + t i S i)
b 0: (-0.7348;1.0478)
b 1: (-2.9781;3.6531)
b 2: (-0.4466;0.4553)
b 3: (-4.8459;5.4431)

2) F-статистика. Критерий Фишера


Fkp = 2.93
Поскольку F < Fkp, то коэффициент детерминации статистически не значим и уравнение регрессии статистически ненадежно.
6. Проверка на наличие гетероскедастичности методом графического анализа остатков.
В этом случае по оси абсцисс откладываются значения объясняющей переменной X i , а по оси ординат квадраты отклонения e i 2 .

y y(x) e=y-y(x) e 2
0.22 0.4 -0.18 0.03
0.67 0.62 0.05 0
0.79 0.71 0.08 0.01
0.42 0.5 -0.08 0.01
0.32 0.44 -0.12 0.02
0.24 0.4 -0.16 0.03
0.95 0.98 -0.03 0
1.05 1.29 -0.24 0.06
0.99 1.12 -0.13 0.02
0.96 1.01 -0.05 0
0.73 0.67 0.06 0
0.52 0.54 -0.02 0
2.1 0.55 1.55 2.41
0.58 0.57 0.01 0
0.87 0.83 0.04 0
0.89 0.85 0.04 0
0.91 0.88 0.03 0
0.14 0.37 -0.23 0.05
0.18 0.39 -0.21 0.04
0.27 0.42 -0.15 0.02
0.37 0.47 -0.1 0.01
0.16 -0.16 0.02