Построение вариационного ряда. Виды рядов. Ранжирование данных. Анализ связи ранжированных рядов

Ранжирование – процедура упорядочивания любых объектов по возрастанию или убыванию некоторого их свойства при условии, что они этим свойством обладают.

Можно ранжировать:

Государство по уровню жизни, рождаемости, безработице;

Профессии по престижности;

Товары по предпочтению потребителей;

Респондентов по политической активности, материальному положению;

Объектами ранжирования являются те объекты, которые непосредственно упорядочиваются. Основание ранжирование (ранжирующий признак) – то свойство, по которому объекты упорядочиваются. В результате ранжирования получаем ранжированный ряд, в котором каждому объекту приписывается свой индивидуальный ранг – место объекта в ранжированном ряду. Число мест и, соответственно, число рангов в ранжированном ряду равняется числу объектов.

Виды ранжированных рядов:

1) каждый объект имеет значение признака, отличное от значений признака других объектов, тогда каждому объекту ранжированного ряда присваивается свой, отличный от другого объекта, ранг;

2) несколько объектов имеют одинаковое значение признака, тогда этим объектам в ранжированном ряду присваивается одинаковые ранги, рассчитанные по определенной формуле. В этом случае ранжированный ряд называется ранжированным рядом со связанными рангами. При решении задач первый ранг будем присваивать наибольшему значению признака. Связанный ранг рассчитывается как среднее значение мест, занимаемых объектами, имеющими одинаковое значение признака. Установление статистической связи для 2-х и более ранжированных рядов осуществляется с помощью ранговых коэффициентов связи – такие коэффициенты, которые позволяют вычислять степень согласованности в ранжировании одних и тех же объектов по двум различным основаниям (признакам). Наиболее распространенным коэффициентом ранговой связи (ранговой корреляции) является коэффициент ρ-Спирмена.

Допустим, что н объектов упорядочены по признаку х и по признаку у. Пусть

Мера несовпадений рангов i-того объекта: d i = R x i - R y i

Свойства:

Изменяется в интервале от -1 до 1;

Ро = 1, если наблюдается полная согласованность ранжированных рядов; ранги одного и того же объекта по двум признакам совпадают.

Ро = -1, если полная несогласованность ранжированных рядов; такая ситуация возникает, если ранговые ряды имеют обратное направление: R x i – 1 2 3 4 5; R y i – 5 4 3 2 1.

Замечание: может рассчитываться для двух видов равных (если каждый объект свой ранг и если имеются связанные ранги).

Проверка гипотезы о статистической значимости коэффициента ρ-Спирмена.

H 0: ρ гс = 0

H 1: ρ гс ≠ 0

Нулевая гипотеза всегда утверждает, что ρ равен 0. Альтернативная – что значение ρ отлично от 0.

Уровень значимости как в таблицах сопряженности.

Государство А Б В Г Д Е Ж З И
Качество жизни 6,8 7,0 6,5 5,9 4,6 5,7 4,5 5,8 4,0
Безработица 20,3 18,0 19,8 23,4 21,6 20,8
Ранг x
Ранг y
|d i |
d 2 i
Σ d 2 i

τ -Кендалла – разность между вероятностями правильного и неправильного порядка для двух наблюдений, извлечённых из совокупности случайно при условии, что связанные ранги отсутствуют. Свойства:

Изменяется от -1 до 1;

Если признаки х и у статистически независимы, то коэффициент τ обращается в 0; если τ равен 0, еще не значит, что признаки статистически независимы;

Если τ равен 1, это значит, что между признаками имеется полная прямая статистическая связь или ранжированные ряды полностью согласованы; если τ равно -1, это значит, что присутствует полная обратная статистическая связь, или ранжированные ряды являются несогласованными.

S – общее число пар объектов с согласованным правильным порядком по обоим объектам. D – общее число пар объектов с несогласованным неправильным порядком по обоим объектам.

Проверка гипотезы о статистической значимости коэффициента τ:

H 0: τ гс = 0

H 1: τ гс ≠ 0

Коэффициент τ является статистически значимым, если его значения для ГС отлично от 0.

|Z H | > Z кр => H 1

Если ранжированный ряд построим для малого числа объектов, то подтверждение нулевой гипотезы нам говорит о том, что нужно изучить большее количество объектов.

Если изучено достаточное количество объектов, то подтверждение нулевой гипотезы говорит о том, что связь между признаками отсутствует.

Множественный коэффициент ранговой связи

Применяется в тех случаях, когда необходимо измерить связь между более чем 2 ранжированными рядами (например, когда мы хотим оценить согласованность мнений экспертов (более 2) при оценке 1 и тех же объектов).

S – сумма квадратичных отклонений значений рангов по строке от среднего ранга для всей совокупности. k 2 – число переменных (число экспертов). n – число ранжируемых объектов.

Понятие сводки, группировки, классификации

Сводка – систематизация и подведение итогов: метеосводка, сводка с полей. Сводка не позволяет детально проанализировать информацию. Любая сводка должна опираться на группировку данных, т.е. сначала группировка, а потом сводка данных.

Группировка – разделение совокупностей на ряд групп по наиболее существенным признакам.

Различают качественную и количественную группировку. Качественная – атрибутивная, количественная – вариационная. В свою очередь вариационная делится на структурную и аналитическую. Структурная группировка предполагает расчет удельного веса каждой группы. Пример: на предприятии 80% - рабочие, 20% - служащие, из них 5% - руководители, 3% - служащие,12% - специалисты. Цель аналитической группировки – выявить взаимосвязь между признаками: стажем работы и средним заработком, стажем и выработкой и другими.

При проведении группировки необходимо:

Проведение всестороннего анализа природы изучаемого явления;

Выявление группировочного признака (одного или нескольких);

Установить границы групп таким образом, чтобы группы существенно отличались друг от друга, и в каждой группе объединялись однородные элементы.

По степени сложности группировки могут быть простые и комбинационные (по признакам).

По исходной информации различают первичную и вторичную группировки, первичная осуществляется на основе исходных данных наблюдения, вторичная использует данные первичной группировки.

Количество групп определяется по формуле Стерджесса:

где n - количество групп, N – генеральная совокупность.

Если используются равные интервалы, то величина интервала равна .

Интервалы могут быть равные и неравные. Последние, в свою очередь, делятся на изменяющиеся по закону арифметической или геометрической прогрессии. Первый и последний интервалы могут быть открытые или закрытые. Закрытые интервалы включают или не включают границы интервала.

Если интервалы закрытые, и ничего не сказано о включении верхних границ, то считаем, что верхние границы включены.

Если интервалы открытые, то ориентируемся по последнему интервалу.

Признак в этих интервалах может измеряться дискретно и непрерывно (т.е. дробиться). При непрерывном признаке границы смыкаются 1- 10, 10 - 20, 20 – 30; если признак изменяется дискретно, то можно использовать следующую запись: 1 – 10, 11 – 20, 21 – 30.

Если интервалы открытые, то величина последнего интервала приравнивается к предыдущему, а первого - ко второму.

Классификация – группировка по качественному признаку. Она относительно устойчива, стандартизирована и утверждается органами государственной статистики.


3.2. Ряды распределения: виды и основные характеристики

Под рядом распределения понимается ряд данных, характеризующих какое-либо социально-экономическое явление по одному признаку. Это простейший вид группировки по двум признакам.

Ряды распределения делятся на качественные и количественные, на ранжированные и не ранжированные, на сгруппированные и не сгруппированные, с дискретным и непрерывным распределением признака.

Примером не сгруппированного, не ранжированного ряда по заработной плате является ведомость заработной платы. В то же время, список работников может быть ранжированный по алфавиту или по табельным номерам. Примером ранжированного ряда является список команд, рейтинг теннисистов.

Ранжированный ряд распределения - ряд данных, расположенных в порядке убывания или возрастания признака.

Для сгруппированных ранжированных рядов выделяют следующие характеристики: варианту, частоту или частость, кумуляту и плотность распределения.

Варианта () – среднее интервальное значение признака. Т.к. при создании группировки должен выполняться принцип равномерного распределения признака в каждом интервале, то варианту можно рассчитывать как полусумму границ интервалов.

Частота () показывает сколько раз встречается данное значение признака. Относительное выражение частоты представляет собой частость (.) , т.е. долю, удельный вес от суммы частот.

Кумулята () – накопленная частота или частость, расчет нарастающим итогом. Кумулятивно подсчитываются объем, затраты, доходы, т.е. результаты деятельности.

Таблица 1

Группировка действующих кредитных организаций
по величине зарегистрированного уставного капитала

в 2008 году в РФ

Под группировкой в статистике понимают расчленение статистической совокупности на группы, однородные в каком-либо существенном отношении, характеристику выделенных групп системы показателей в целях выделения типов явлений, изучение их структуры и взаимосвязи. В процессе сводки первичного материала явления разделяются на группы по различным варьирующим признакам.

Варьирующий признак - это признак, принимающий различные значения у отдельных единиц совокупности.

Задачи, стоящие перед группировкой:

1. Выделение в составе массового явления тех его частей, которые однородны по качеству и условиям развития, и в которых действуют одни и те же закономерные влияния факторов;

2. Изучение и характеристика структуры и структурных сдвигов в исследуемых совокупностях;

3. Влияние взаимосвязи между отдельными признаками изучаемого явления.

Главным вопросом метода группировок является выбор группировочного признака, от правильного выбора которого зависят результаты группировки и всей работы в целом.

После отбора группировочного признака важно разделить единицы совокупности на группы.

Выделенные группы должны быть качественно однородными, а также иметь достаточно большую численность единиц, что позволит проявить типичные черты, свойственные массовым явлениям. Поэтому большое внимание уделяется определения числа групп и их границ. При решения этого вопроса учитывают вид группировки, характер группипровочного признака и задачи исследования.

Сгруппируем хозяйства. За группировочный признак возьмем удой от одной коровы, в кг. По уровню молочной продуктивности наблюдается большое различие в хозяйствах данной зоны. Этот признак колеблется в

С помощью метода статистической группировки различным различия между хозяйствами по уровню молочной продуктивности коров.

Первым этапом работы является построение ранжированного ряда. В ранжированном ряду все величины расположены по нарастанию или убыванию группировочного признака.

Ранжированный ряд показывает интенсивность изменения величины пределах от 1364 до 6270 кг. группировочного признака, по нему можно установить резкие переходы и выделить очень сильно отличающиеся по величине признака единиц.

Для составления ранжированного ряда используем данные молочной продуктивности коров в хозяйствах Ачинской зоны за 2003 г.

Результаты оформим в таблице 2.1.

Таблица 2.1.

Название хозяйства

Удой от 1 коровы в год, кг

ЗАО«Белоозерское»

ЗАО « Шарыповское»

САО «Ивановское»

ЗАО «Оракское»

АО «Сахаптинское»

СЗАО «Анашенское»

ЗАО «Энергетик»

СЗАОТ «Бараитское»

СЗАОТ «Игрышенское»

СХПК «Белоярский»

АОЗТ «Павловское»

АОЗТ «Ададымское»

АО «Краснополянское»

АОЗТ «Дороховское»

АО «Гляденское»

СХАОЗТ «Легостаевское»

ЗАО «Алтайское»

ЗАО «Светлолобовское»

АОЗТ «Подсосенское»

АОЗТ «Крутоярское»

ТОО п/з « Ачинский»

ЗАО «Авангард»

ОАО «Малиновский»

САОЗТ «Навоселовское»

АОЗТ «Назаровское»

Для большей наглядности изобразим ранжированный ряд графически, для чего построим огниву Галь тона.

Для этого на оси абсцисс расположим в порядке возрастания группировочного признака, а по оси - величину молочной продуктивности коров, соответствующий хозяйству, рис.2.1.

Ранжированный ряд хозяйств по уровню молочной продуктивности коров.

Проанализируем данные ранжированного ряда и его графика - оценим характер и интенсивность различий между хозяйствами и попытаемся выделить существенно отличные группы хозяйств. Между хозяйствами имеются существенные различия в уровне молочной продуктивности коров: размах колебаний составляет 6270 - 1364 = 4906 кг от 1 коровы, а уровень производства молока в хозяйстве №25 выше, чем в №1 в 4,6 раза (6720/1364).

Возрастания продуктивности молока от хозяйства к хозяйству происходит в основном постепенно, плавно, без больших скачков, но у последнего хозяйства удой от 1 коровы существенно отличается от остальной массы хозяйств. Но это хозяйство нельзя выделить в отдельную группу, а так же поскольку между остальными хозяйствами различия небольшие, без скачков и нет других данных, указывающих границы перехода от 1 группы к другой, то выделить типичные группы на снование анализа ранжированного ряда в данном случае нельзя. Поэтому далее необходимо построить интервальный ряд распределения хозяйств.

Интервальный вариационный ряд дает возможность получить представление о количестве и характере групп. В начале решим вопрос о числе групп, на которые следует распределить совокупность хозяйств. Приближенное число n можно определить по формуле (2.1):

n = 1+3.322LgN, (2.1)

где n - число групп, N - совокупность единиц.

Эта зависимость может служить ориентированной при определении числа групп в этом случае, если распределение единиц совокупности по данному признаку приближаются к нормальному и применяются равные интервалы в группах.

n = 1+3.322Lg25 = 1+3.322*1.5 ~ 6 групп.

i = (X max - X min) / n , где (2.2)

X max - максимальное значение признака в изучаемом ранжированном ряду,

X min - минимальное значение признака в изучаемом ранжированном ряду,

n - число групп.

I = (6270 - 1364)/6 = 818

Теперь построим ряд распределения хозяйств при этой величине интервала, значение X min = 818 кг, тогда верхняя граница первой группы составит: Xmin+i = 2182 кг. Эта граница одновременно является границей второй группы. Границы остальных групп определяются аналогично. Полученные данные Представлены в таблице 2.2.

Таблица 2.2

Интервальный ряд распределения совхозов (таблица 2.2.) показывает, что в совокупности преобладают хозяйства с удоем от одной коровы (11 хозяйств) от 1364 до 2182 кг. Группы хозяйств с высокой продуктивностью малочисленны, поэтому следует их объединить, то есть провести вторичную группировку, так как в четвертой группе нет ни одного хозяйства, а в пятой одно, но в каждой группе должно быть не менее трех хозяйств.


Интервальный ряд распределения хозяйств по уровню молочной продуктивности коров.

Таблица 2.3

Вторичная группировка хозяйств по уровню молочной продуктивности коров.

Сравнение в пределах каждой группы числа хозяйств можно сказать, что число хозяйств с низким уровнем продуктивности больше, чем с высоким в значительной мере.

Вариационный ряд представляет собой расположение значений признака каждой статистической единицы в определенном порядке. При этом отдельно взятые значения признака принято называть вариантой (вариантом). . Каждый член вариационного ряда (варианта) называется порядковой статистикой, а номер варианты - рангом (порядком) статистики.

Важнейшими характеристиками вариационного ряда являются его крайне варианты (Х 1 =Хmin; Х n =Хmax) и размах вариации (Rх = Хn – Х 1).

Вариационные ряды находит широкое применение при первичной обработке статистической информации, полученной в результате статистического наблюдения. Они служат базой для построения эмпирической функции распределения статистических единиц в составе статистической совокупности. Поэтому вариационные ряды называют рядами распределения .

В статистике различает следующие виды вариационных рядов: ранжированный, дискретный, интервальный.

Ранжированный (от латинского rang – чин) ряд - это такой ряд распределения единиц статистической совокупности, в котором варианты признака в порядке возрастания или убывания. Любой ранжированный ряд состоит из ранговых номеров (1 до n) и соответствующих им вариант. Число вариант в ранжированном ряду, сформированному по существенному признаку, обычно равно числу единиц в статистической совокупности.

Для формирования ранжированного ряда по заданному признаку (например, по числу работников животноводства в 100 сельскохозяйственных предприятиях) можно воспользоваться макетом табл. 5.1.

Т а б л и ц а 5.1. Порядок формирования ранжированного ряда

Конец работы -

Эта тема принадлежит разделу:

Статистика

И продовольствия республики беларусь.. департамент образования науки и кадров..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Шундалов Б.М
Общая теория статистики. Учебное пособие для экономических специальностей высших сельскохозяйственных учебных заведений. Учебное пособие со

Предмет статистики
Слово "статистика" происходит от латинского "статус" (status), которое означает состояние, положение вещей. Это даёт возможность подчеркнуть теоретическую познавательную сущност

Сущность статистического наблюдения
Любое статистическое исследование, как было отмечено выше (тема 1), всегда начинается со сбора первичной (исходной) информации о каждой единице статистической совокупности. Однако, не всяк

Программа статистического наблюдения
В первой главе было обращено внимание на то, что каждая статистика единица, как объект в целом, обладает множеством различных свойств, качеств, специфических особенностей, которые принято называть

Перечень признаков, регистрируемых в процессе наблюдения, принято называть программой статистического наблюдения
Разработка программы – один из важнейших теоретических и практических вопросов статистического наблюдения. Добротность программы во многом определяет качество собранного материала, его надёжность и

Формы статистического наблюдения
Всё многообразие статистических наблюдений сводит к двум формам: статистической отчётности и специально организованным статистическим наблюдениям. Статистическая отчётность

Статистические формуляры
Статистический формуляр – это банк, содержащий вопросы программы статистического наблюдения и место для ответов на них. формуляр является носителем статистической информации, полученной в результат

Виды статистического наблюдения
Статистические наблюдения классифицируются по видам, которые могут различаться по различным принципам. Так, в зависимости от степени охвата изучаемого объекта статистические наблюдения могут подраз

Способы проведения статистических наблюдений
Статистические наблюдения могут проводится различными способами, среди которых нередко встречаются следующие: отчётный, экспедиционный, самоисчисления, саморегисрации, анкетный, корреспондентский.

Место, сроки и период проведения статистических наблюдений
В плане любого статистического наблюдения должно быть чётко определено место проведения этого наблюдения, т.е. то место, где производится регистрация собираемой информации, заполнения статистическо

Ошибки статистического наблюдения и меры борьбы с ними
Одним из наиболее важных требований, предъявляемых к результатам статистического наблюдения, является их точность, под которой понимается мера соответствия статистических знаний, п

Первичная статистическая сводка
Результаты статистического наблюдения содержат разносторонние сведения о каждой единице совокупности или объекта и обычно носят неупорядоченный характер. Этот исходный материал необходимо, прежде в

Сущность и значение относительных статистических показателей
Относительные показатели – это статистические величины, выражающие меру количественного соотношения абсолютных значений признака и отображающие относительные размеры явлений и процессов. О

Виды относительных показателей. Относительные показатели динамики
В зависимости от задач, решаемых с помощью относительных величин, различают следующие виды относительных показателей: динамики, структуры, координации, интенсивности, сравнения, выполнения заказа,

Относительные показатели структуры
Одна из важнейших особенностей всех явлений заключается в их сложности. Даже молекула дистиллированной воды состоит из атомов водорода и кислорода. Многие же явления природы, общества, человеческог

Относительные показатели координации
Относительные показатели координации – это соотношение между собой абсолютных размеров составных частей в некотором абсолютном целом. Для расчёта этих показателей одну из составных

Относительные показатели интенсивности
Относительные показатели интенсивности (степени) представляют собой соотношение абсолютных размеров двух качественно различных, но взаимосвязанных признаков в статистической совоку

Относительные показатели сравнения
Относительные показатели сравнения (сопоставления) получают путем соотношения одноименных абсолютных показателей, относящихся к разным статистическим единицам, сов

Относительные показатели выполнения заказа
Относительные показатели выполнения заказа (задания, плана) представляют собой соотношение абсолютных, фактически достигнутых показателей за определенный период или по состоянию на

Относительные показатели уровня экономического развития
Относительными показателями уровня экономического развития называют соотношение абсолютных размеров двух качественно различных (разноименных), но взаимосвязанных признаков. При это

Сущность и значение графического метода
Абсолютные статистические показатели, полученные в результате статистических наблюдений, и рассчитанные на этой основе разнообразные относительные показатели могут быть лучше, глубже, доступнее пон

Основные требования, предъявляемые к построению координатных диаграмм
Наиболее распространенным и удобным способом графического изображения абсолютных и относительных показателей динамики, показателей сравнения и др. считается координатнаядиаграмма.

Способы графического изображения показателей динамики и структуры
Во многих случаях имеется необходимость на одной и той же координатной диаграмме отразите не одну, а несколько линий, характеризующих динамику различных абсолютных или относительных показателей либ

Способы графического изображения показателей сравнения
В широком понимании сравнение показателей проводится как во времени, так и в пространстве, т.е. приемами сравнения могут быть охвачены и динамика, и структура, и территориальные объекты. Поэтому пр

Сущность и значение картограмм и картодиаграммы
Во многих случаях имеется необходимость графически изобразить важнейшие признаки, характерные для обширных территориальных объектов. В системе АПК это могут быть населенные пункты, сельскохозяйстве

Контрольная вопросы к теме 4
1. Что представляет собой графический метод и на чем он основывается? 2. С какими основными целями используется графический метод. 3. Каким образом классифицируютс

Сущность вариации. Виды вариационных признаков
Вариация (от латинского variatio – изменение) представляет собой изменение признака (вариант) в статистической совокупности, т.е. принятие единицами совокупности или их группами разных знаний призн

По числу работников животноводства
Ранговый номер (№) варианты Варианта, соответствующая ранговому номеру (№) Символ Число работников животноводства

Дискретный ряд распределения
Дискретный (разделительный) ряд представляет собой такой вариационный ряд, в котором его группы сформированы по признаку, изменяющемуся прерывно, т.е. через определённое число един

Работников животноводства
№ варианты Варианта (значение признака), Х Частотные знаки Локальные частоты, fл Накопительные частоты, fн

Интервальный ряд распределения
Во многих случаях, кота статистическая совокупность включает большое или тем более бесконечное число вариант, что чаще всего встречается при непрерывной вариации, практически невозможно и нецелесоо

Сущность средних величин
Вариационные ряды отображают большое разнообразие явлений и процессов, составляющих сущность нашей действительности. Для более полного, углубленного изучения явлений и процессов окружающего нас мир

Средняя арифметическая величина
Если в формулу 6.2 подставить значение К=1, то получается средняя арифметическая величина, т.е. .

В ранжированном ряду распределения
Ранговые №№ Варианты (значения признака) Символы Посевная площадь, га

Ряду распределения
№ п.п. Варианты Локальные частоты Взвешенные средние варианты Символы Урожайн

Основные свойства средней арифметической величины
Средняя арифметическая величина обладает многими математическими свойствами, имеющими важное математическое значение при ее расчёте. Знание этих свойств помогают контролировать правильность и точно

Средняя хронологическая величина
Одной из разновидностей средней арифметической величины является средняя хронологическая. Среднюю величину, исчисленную по совокупности значений признака в разные моменты или за различные периоды в

Средняя квадратическая величина
При условии постановки значения К=2 в формулу 6.2. получаем среднюю квадратическую величину. В ранжированном ряду средняя квадратическая величина рассчитывается по невзвешенной (пр

Средняя геометрическая величина
Если в формулу 6.2 подставить значение К=0, то в результате получаем среднюю геометрическую величину, которая имеет простую (невзвешенную) и взвешенную формы. Средняя геометрическая проста

Средняя гармоническая величина
При условии подстановки в общую формулу 6.2 значение К=-1 можно получить среднюю гармоническую величину, которая имеет простую и взвешенную формы. Название средней гармони

Структурные среднее. Сущность и значение моды
В некоторых случаях для получения обобщающей характеристики статистической совокупности по какому-либо признаку приходится пользоваться т.н. структурными средними. К ним относят

Сущность и значение медианы
Медиана– варианта, находящиеся в середине вариационного ряда. Медиана в ранжированном ряду находится следующим образом. Во-первых, рассчитывают номер медианой варианты:

Понятие о простейших показателях вариации
Сущность вариации была рассмотрена в 5 главе учебника, где отмечалось, что вариация – это колеблемость, изменение величины признака в статистической совокупности, т.е. принятие единицами совокупнос

Среднее квадратической отклонение
Среднее квадратической отклонение рассчитывается на базе средней квадратической величины. Оно выступает в не взвешенной (простой) и взвешенной формах. Для ранжированного р

Коэффициент вариации
Коэффициент вариации представляет собой относительный показатель, который можно рассчитать по следующей формуле:

Контрольна вопросы к теме 6
1. Что такое средняя величина и что она выражает? 2. Что представляет собой определяющее свойство совокупности и для чего его применяют в статистике? 3. Какие основные виды средни

Сущность генеральной и выборочной совокупности
В статистике сравнительно редко встречается сплошной вид наблюдения, каким является, например, всеобщая перепись населения. Все-таки наиболее часто приходится использовать несплошные наблюдения, ко

Понятие о стохастической совокупности
В реальных условиях сравнительно редко встречаются случаи статистической работы с генеральной совокупностью и, следовательно, далеко не всегда можно получить основные статистические характеристики

Сущность выборочного метопа
Статистическая работа в большинстве случаев так или иначе связана с данными, полученными в результате применения выборочного метода. Многие исследования были бы невыполнимы, если бы не использовали

Преимущества и недостатки выборочного метода
Выборочный метод имеет ряд преимуществ перед сплошным наблюдением. Во - первых, выборочное наблюдение позволяет существенно экономить труд, средства, время для его проведения. Сове

Способы отбора, их преимущества и недостатки
Отбор статистических единиц из генеральной совокупности может быть произведен no-разному и зависит от многих условий. Выборочный метоп включает следующие способы отбора статистических единиц случай

Сущность ошибок репрезентативности и порядок их расчета
Одним из центральных вопросов по выборочному методу считается теоретический расчет основных статистических характеристик и прежде всего среднего значения признаке в генеральной статистической совок

Понятие о малой выборке. Точечная оценка основных статистических характеристик
Применение выборочного метопа может базироваться на отборе из генеральной совокупности теоретически любого числа статистических единил. Математически доказано, что выборочные совокупности могут быт

Предельная ошибка выборки. Интервальная опенка основных статистических характеристик
Предельная ошибка выборки представляет собой расхождение между статистическими характеристиками, полученными в выборочной и генеральной совокупности Как было показано выше (формула

Приемы расчета численности выборки при различных способах отбора
Подготовительная работа к проведению выборочного наблюдения непосредственно связана с определением необходимой численности выборки, которая зависит от способа отбора и численности единиц в генераль

Понятие о вторичной (сложной) статистической сводке
Результаты простой сводки, содержание которой рассмотрено в теме 2, не всегда могут удовлетворить исследователя, так как они дают лишь общее представление об изучаемом объекте, т.е. от статистики т

Типологические группировки
Типологическая группировкапредставляет собой расчленение статистической совокупности на одно-качественных в существенном отношении типологических группы. Типологическую группировку

Структурные группировки
Структурная группировка заключается в расчленении однородной и качественном отношении совокупности статистических единиц на группы, характеризующий состав сложного объекта. Посредством структурной

Сущность и порядок проведения простой и аналитической группировки
Аналитическая группировка, при которой статистическая совокупность разбивается на однородные группы по одному какому-либо факторному признаку, называется простой.

Аналитической группировки
№п.п. Группы крестьянских хозяйств по дозам удобрений, т/га. Частотные знаки в группах (число единиц совокупности в группе)

Результативными показателями в картофелеводстве
№ п.п. Показатели Группы хозяйств по доза удобрений, т/га Итого (в среднем) 10-20

Сущность и значение статистических таблиц
Результаты обработки данных наблюдения с помощью разнообразных статистических методов (сводки, относительных, средних величин, формирований, вариационных рядов, показателей вариации, аналитических

Элементарный состав статистических таблиц
Комплексная статистическая обработка результатов наблюдения обычно связана с использованием многочисленных таблиц. Поэтому каждой таблице присваивается индивидуальный номер.Обязате

Виды и формы статистических таблиц
В зависимости от строения табличного подлежащего различают следующие виды статистических таблиц: простые, групповые и комбинационные. Простая статистическая таблица - хара

Вспомогательные и результативные статистические таблицы
Статистические таблицы могут выполнять различную функциональную роль. Одни из них служат например, для обобщения результатов статистического наблюдения и способствуют выполнения функции первичной с

Результатами производства, 2003 г
(комбинационная таблица) № п.п. Группы хозяйств по нагрузке сельхозугодий на 1 трактор, га Подгруппы хозяйств по нагрузк

Льноперерабатывающих предприятий АПК в 2003 г
(рабочая таблица) № п.п. Годовой объем переработки тресты, т Численность работников, чел Грузоподъемность а

Оформление статистических таблиц
Достижение поставленных целей с помощью табличного метода возможно в тех случаях, когда выдержаны необходимые требования по оформление статистических таблиц. Обычно все таблицы должны имет

Понятие о дисперсионном методе
Название метода обусловлено широким использованием различных видов дисперсий, сущность и способы расчета которых рассмотрены в шестой теме учебника. Целесообразно отметить, что дисперсия количестве

Признака-результата
№ п/п Индивидуальные варианты Линейные отклонения индивид. вариант от средней Квадраты линейных отклонений

Крестьянских хозяйствах
№ п/п Урожайность, ц/га Линейные отклонения индивидуальной урожайности от средней, ц/га Квадраты линейных отклонений урожайнос

Фитофтороза, на урожайность картофеля
№ п/п Группы хозяйств по удельному весу обработанных посевов, % Число хозяйств в группе Средний удельный вес обработанных посевов,

Признака-результата
№ группы Интервалы по факторному признаку Локальная частота Средняя варианта результативного признака

Виды дисперсий. Правило сложения дисперсий
Принцип расчета дисперсии (среднего квадрата отклонений) в общем виде рассмотрен в теме 6. Применительно к дисперсионному методу это означает, что каждому виду вариации соостветствует определенная

Урожайности картофеля (первая группа)
№ п.п. Урожайность, ц/га Линейное отклонение от средней групповой урожайности Квадраты линейных отклонений

Понятие о критерии Р. Фишера
Дисперсионный метод состоит в оценке отношения исправленной дисперсии, характеризующей систематические колебания групповых средних значений изучаемого результативного признака, к исправленной диспе

Двухфакторный дисперсионный комплекс
Решение этого комплекса направленно на изучение качественного влияния двух факторных признаков влияния двух факторных признаков на один или несколько результативных признаков. Двухфакторный комплек

Зерновых культур
№ подгруппы Число хозяйств в подгруппе Средняя урожайность ц/га Линейные отклонения урожайности в подгруппе от средн

Особенности многофакторного дисперсионного комплекса
Изучение качества связи, т.е. существенности влияния нескольких (трех, четырех и более) факторных признаков на результативные показатели, по существу является продолжительности приема комбинированн

Урожайности зерновых культур
№ п.п. Элементы вариаций Символы Общая вариация Систематическая вариация Остаточная вариац

Сущность и виды корреляций
В предыдущей главе было показано, что качество (существенность) зависимости между факторными и результативными признаками в статистической совокупности определяется и оценивается с помощью дисперси

Основные формы корреляционной связи между признаками
Выявлению формы связи между признаками предшествует определение причинной зависимости между ними. Это наиболее важный и ответственный момент для правильного использования корреляционного метода. По

Показатели тесноты корреляционных связей. Корреляционное отношение
Одним из центральных вопросов, решаемых с помощью корреляционного метода, является определение и оценка количественной меры тесноты связи между факторными и результативными признаками. При

Коэффициенты прямолинейной парной корреляции
Если взаимосвязь между признаками изучаемой парой признаков выражается в форме, близкой к прямой, то степень тесноты связи между этими признаками можно рассчитать при помощи коэффициента пр

Ранговый коэффициент корреляции
Основные статистические характеристики в тех случаях, когда генеральная совокупности, из которой берется выборка, оказывается за пределами параметров нормального или близкого к нему закона распреде

Коэффициент множественной корреляции
При изучении тесноты связи между несколькими факторными и результативными признаками рассчитывают совокупный коэффициент множественной корреляции. Так, при определении совокупной м

Показатели детерминации
При изучении количественного влияния признаков – факторов на результаты важно определить, какая часть колеблемости результативного признака непосредственно обусловлена воздействием вариации изучаем

Сущность, виды, и значение уравнений регрессии
Под регрессией понимается функция, предназначенная для описания зависимости изменения результативных признаков под влиянием колеблемости признаков – факторов. Понятие регрессии введено в статистиче

Уравнение прямолинейной регрессии
Корреляционную связь в форме, близкой к прямолинейной, можно представить в виде уравнения прямой линии:

Уравнение гиперболической регрессии
Если форма связи между признаком-фактором и признаком-результатом, выявленная с помощью координатной диаграммы (поля корреляции), приближается к гиперболической, то необходимо составить и решить ур

Регрессии
№ п.п. Признак-фактор Признак-результат Обратное значение признака-фактора Квадрат обратного значения

Гиперболической регрессии
№ п.п. Урожайность гороха, ц/га Х Себестоимость гороха, тыс. руб./ц У Расчетные величины

Уравнение параболической регрессии
В некоторых случаях эмпирические данные статистической совокупности, изображенные наглядно с помощью координатной диаграммы, показывают, что увеличение фактора сопровождаются опережающим ростом рез

Параболической регрессии
№ п.п. Х У ХУ Х2 Х2У Х4

Параболической регрессии
№ п.п. Удельный вес посевов картофеля, Х Урожай картофеля, тыс. ц. У Расчеты величины

Уравнение множественной регрессии
Применение корреляционного метода при изучении зависимости признака – результата от нескольких факторных признаков формируется по схеме, аналогической простой (парной) корреляции. Одной из

Коэффициенты эластичности
Для содержательного и доступного описания (интерпретации) результатов, отражающих корреляционно – регрессионную зависимость между признаками посредством различных уравнений регрессии, обычно исполь

Сущность динамического ряда
Все явления окружающего мира претерпевают непрерывные изменения во времени; с течением времени, т.е. в динамике изменяется их объем, уровень, состав, структура и т.д. целесообразно отметить, что по

Сельскохозяйственных предприятиях
(на начало года; тыс. физических единиц) Показатели 2000 г. 2001 г. 2002 г. 2003 г.

Основные показатели динамического ряда
Всесторонний анализ динамического ряда позволит вскрыть и характеризовать закономерности, проявляющие на разных этапах развития явлений, выявить тенденции и особенности развития этих явлений. В про

Абсолютные приросты уровней
Одним из наиболее простых показателей развития динамики является абсолютный прирост уровня. Абсолютным приростом называется разность двух уровней динамического ряда.Абсолю

Темпы роста уровней
Для характеристики относительной скорости изменения показатель темпа роста. Темп роста – это отношение одного уровня динамического ряда к другому, принятому за базу сравнения. темп роста могут быть

Темп прироста уровней
Если абсолютная скорость прироста уровней динамического ряда характеризуется величиной абсолютных приростов, то относительная скорость прироста уровней – темпами прироста. Темп при

Абсолютное значение одного процента прироста
При анализе динамических рядов нередко ставится задача: выяснить, каким абсолютными значениями выражается 1 % прироста (снижения) уровней, так как в ряде случаев при снижении (замедлении) темпов ро

За 1999-2003 гг
Годы Урожайность, ц/га Абсолютные приросты урожайности., ц/га Темп роста, % Темп прироста, %

Приемы выравнивания динамических рядов
Для выявления временных закономерностей требует, как правило, достаточно большое число уровней, динамического ряда. Если же динамический ряд состоит из ограниченного числа уровней, то его выравнива

Способы аналитического выравнивания динамического рядов
Выявление общей тенденции развития уровней динамического ряда может быть проведено с применением различных приемов аналитического выравнивания, которое наиболее часто осуществляетс

Аналитическое выравнивание по показательной кривой
В некоторых случаях, например, в процессе ввода в действие и освоение новых производственных мощностей, для динамического ряда может быть характерно быстрорастущее изменение уровней, т.е. цепные те

Аналитическое выравнивание по параболе второго порядка
Если изучаемый динамический ряд характеризуется положительными абсолютными приростами, с ускорением развития уровней, то выравнивание ряда может быть проведено по параболе второго порядка.

Аналитическое выравнивание по уравнению гиперболы
Если для динамического ряда характерны затухающие абсолютные снижения уровней (например, динамика трудоемкости продукции, трудообеспеченности производства в сельском хозяйстве и др.), то выравниван

Понятие об интерполяции и экстраполяции уровней динамического ряда
В некоторых случаях необходимо найти значения отсутствующих промежуточных уровней динамического ряда на основе известных его значений. В таких случаях может быть использован прием интерполяции, зак

Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения.

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).

Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным . Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд .

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Частоты ряда f могут заменяться частостями w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:

При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m:

где R = xmax - xmin ; m = 1 + 3,322 lgn (формула Стерджесса); n - общее число единиц совокупности.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду.

Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда.

Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина.

Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин.

То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле

где n - число единиц в совокупности.

Численное значение медианы определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы

где xМе - нижняя граница медианного интервала; i - величина интервала; S-1 - накопленная частота интервала, которая предшествует медианному; f - частота медианного интервала.

Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды, необходимо использовать формулу

где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Основной целью анализа вариационных рядов является выявление закономерности распределения, исключая при этом влияние случайных для данного распределения факторов. Этого можно достичь, если увеличивать объем исследуемой совокупности и одновременно уменьшать интервал ряда. При попытке изображения этих данных графически мы получим некоторую плавную кривую линию, которая для полигона частот будет являться некоторым пределом. Эту линию называют кривой распределения.

Иными словами, кривая распределения есть графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, которое функционально связано с изменением вариант. Кривая распределения отражает закономерность изменения частот при отсутствии случайных факторов. Графическое изображение облегчает анализ рядов распределения.

Известно достаточно много форм кривых распределения, по которым может выравниваться вариационный ряд, но в практике статистических исследований наиболее часто используются такие формы, как нормальное распределение и распределение Пуассона.

Нормальное распределение зависит от двух параметров: средней арифметической и среднего квадратического отклонения . Его кривая выражается уравнением

где у - ордината кривой нормального распределения; - стандартизованные отклонения; е и π - математические постоянные; x - варианты вариационного ряда; - их средняя величина; - cреднее квадратическое отклонение.

Если нужно получить теоретические частоты f" при выравнивании вариационного ряда по кривой нормального распределения, то можно воспользоваться формулой

где - сумма всех эмпирических частот вариационного ряда; h - величина интервала в группах; - cреднее квадратическое отклонение; - нормированное отклонение вариантов от средней арифметической; все остальные величины легко вычисляются по специальным таблицам.

При помощи этой формулы мы получаем теоретическое (вероятностное) распределение , заменяя им эмпирическое (фактическое) распределение , по характеру они не должны отличаться друг от друга.

Тем не менее в ряде случаев, если вариационный ряд представляет собой распределение по дискретному признаку, где при увеличении значений признака х частоты начинают резко уменьшаться, а средняя арифметическая, в свою очередь, равна или близка по значению к дисперсии (), такой ряд выравнивается по кривой Пуассона.

Кривую Пуассона можно выразить отношением

где Px - вероятность наступления отдельных значений х; - средняя арифметическая ряда.

При выравнивании эмпирических данных теоретические частоты можно определить по формуле

где f" - теоретические частоты; N - общее число единиц ряда.

Сравнивая полученные величины теоретических частот f" c эмпирическими (фактическими) частотами f, убеждаемся, что их расхождения могут быть весьма невелики.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия.

Для оценки близости эмпирических и теоретических частот применяются критерий согласия Пирсона, критерий согласия Романовского, критерий согласия Колмогорова.

Наиболее распространенным является критерий согласия К. Пирсона , который можно представить как сумму отношений квадратов расхождений между f" и f к теоретическим частотам:

Вычисленное значение критерия необходимо сравнить с табличным (критическим) значением . Табличное значение определяется по специальной таблице, оно зависит от принятой вероятности Р и числа степеней свободы k (при этом k = m - 3, где m - число групп в ряду распределения для нормального распределения). При расчете критерия согласия Пирсона должно соблюдаться следующее условие: достаточно большим должно быть число наблюдений (n 50), при этом если в некоторых интервалах теоретические частоты < 5, то интервалы объединяют для условия > 5.

Если , то расхождения между эмпирическими и теоретическими частотами распределения могут быть случайными и предположение о близости эмпирического распределения к нормальному не может быть отвергнуто.

В том случае, если отсутствуют таблицы для оценки случайности расхождения теоретических и эмпирических частот, можно использовать критерий согласия В.И. Романовского КРом, который, используя величину , предложил оценивать близость эмпирического распределения кривой нормального распределения при помощи отношения

где m - число групп; k = (m - 3) - число степеней свободы при исчислении частот нормального распределения.

Если вышеуказанное отношение < 3, то расхождения эмпирических и теоретических частот можно считать случайными, а эмпирическое распределение - соответствующим нормальному. Если отношение > 3, то расхождения могут быть достаточно существенными и гипотезу о нормальном распределении следует отвергнуть.

Критерий согласия А.Н. Колмогорова используется при определении максимального расхождения между частотами эмпирического и теоретического распределения, вычисляется по формуле

где D - максимальное значение разности между накопленными эмпирическими и теоретическими частотами; - сумма эмпирических частот.

По таблицам значений вероятностей -критерия можно найти величину , соответствующую вероятности Р. Если величина вероятности Р значительна по отношению к найденной величине , то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны.

Необходимым условием при использовании критерия согласия Колмогорова является достаточно большое число наблюдений (не меньше ста).