Прогнозирование на основе метода экспоненциального сглаживания. Пример решения задачи. Прогнозирование методом экспоненциального сглаживания (ES, exponential smoothing)

Экспоненциальное сглаживание – более сложный метод взвешенного среднего. Каждый новый прогноз основан на предыдущем прогнозе плюс процент разницы между этим прогнозом и фактическим значением ряда в этой точке.

F t = F t -1 + (A t -1 - F t -1) (2)

Где: F t – прогноз для периода t

F t -1 – прогноз для периода t-1

– сглаживающая константа

A t - 1 – фактический спрос или продажи для периода t-1

Константа сглаживания представляет собой процент от ошибки про­гноза. Каждый новый прогноз равен предыдущему прогнозу плюс процент от предыдущей ошибки.

Чувствительность корректировки прогноза к ошибке определена кон­стантой сглаживания , чем ближе её значение к 0 , тем медленнее прогноз будет приспосабливаться к ошибкам прогноза (т.е. тем больше степень сгла­живания). Наоборот, чем ближе значение к 1,0 , тем выше чувствитель­ность и меньше сглаживание.

Выбор константы сглаживания – в основном вопрос свободного вы­бора или метода проб и ошибок. Цель состоит в том, чтобы выбрать такую константу сглаживания, чтобы, с одной стороны, прогноз остался достаточно чувствительным к реальным изменениям данных временного ряда, а с дру­гой – хорошо сглаживал скачки, вызванные случайными факторами. Обычно используемые значения находятся в диапазоне от 0,05 до 0,50.

Экспоненциальное сглаживание – один из наиболее широко исполь­зуемых методов прогнозирования, частично из – за минимальных требова­ний по хранению данных и легкости вычисления, а частично из-за той лёгко­сти, с которой система коэффициентов значимости может быть изменена простым изменением значения .

Таблица 3. Экспоненциальное сглаживание

Период Фактиче­ский спрос α= 0,1 α = 0,4
прогноз ошибка прогноз ошибка
10 000 - - - -
11 200 10 000 11 200-10 000=1 200 10 000 11 200-10 000=1 200
11 500 10 000+0,1(11 200-10 000)=10 120 11 500-10 120=1 380 10 000+0,4(11 200-10 000)=10 480 11 500-10 480=1 020
13 200 10 120+0,1(11 500-10 120)=10 258 13 200-10 258=2 942 10 480+0,4(11 500-10 480)=10 888 13 200-10 888=2 312
14 500 10 258+0,1(13 200-10 258)=10 552 14 500-10 552=3 948 10 888+0,4(13 200-10 888)=11 813 14 500-11 813=2 687
- 10 552+0,1(14 500-10 552)=10 947 - 11 813+0,4(14 500-11 813)=12 888 -



Методы для тенденции

Существует два важных метода, которые можно использовать для разработки прогнозов, когда присутствует тенденция. Один из них предпола­гает использование уравнения тенденции; другой – расширение экспонен­циального сглаживания.

Уравнение тенденции:

Линейное уравнение тенденции имеет следующий вид:

Y t = a + δ∙ t (3)

Где: t – определённое число периодов времени от t= 0 ;

Y t – прогноз периода t ;

α – значение Y t при t=0

δ – наклон линии.

Коэффициенты прямой α и δ , могут быть вычислены из статистических данных за определённый период, с использованием следующих двух урав­нений:

δ= , (4)

α = , (5)

Где: n – число периодов,

y – значение временного ряда

Таблица 3. Уровень тенденции.

Период (t) Год Уровень продаж (y) t∙y t 2
10 000 10 000
11 200 22 400
11 500 34 500
13 200 52 800
14 500 72 500
Итого: - 60 400 192 200

Вычислим коэффициенты линии тенденции:

δ=

Таким образом, линия тенденции Y t = α + δ ∙ t

В нашем случае, Y t = 43 900+1 100 ∙t ,

Где t = 0 для периода 0.

Составим уравнение для периода 6 (2015 год) и 7 (2016 год):

– прогноз на 2015 год.

Y 7 = 43 900+1 100*7= 51 600

Построим график:

Экспоненциальное сглаживание тенденций

Разновидность простого экспоненциального сглаживания может ис­пользоваться, когда временной ряд выявляет тенденцию. Эта разновидность называется экспоненциальным сглаживание, учитывающим тенденцию или, иногда, двойным сглаживанием. Оно отличается от простого экспоненциаль­ного сглаживания, которое используется только тогда, когда данные изме­няются вокруг некоторого среднего значения или имеют скачкообразные или постепенные изменения.

Если ряд выявляет тенденцию и при этом используется простое экспо­ненциальное сглаживание, то все прогнозы будут запаздывать по отноше­нию к тенденции. Например, если данные увеличиваются, то каждый про­гноз будет занижен. Наоборот, уменьшение данных даёт завышенный про­гноз. Графическое отображение данных может показать, когда двойное сглаживание будет предпочтительнее, чем простое.

Скорректированный тенденцией прогноз (TAF) состоит из двух элемен­тов: сглаженной ошибки и фактора тенденции.

TAF t +1 = S t + T t , (6)

Где: S t – сглаженный прогноз;

T t – оценка текущей тенденции

И S t = TAF t + α 1 (A t - TAF t) , (7)

T t = T t-1 + α 2 (TAF t –TAF t-1 – T t-1) (8)

Где α 1 , α 2 – сглаживающие константы.

Чтобы использовать этот метод, нужно выбрать значения α 1 , α 2 (обыч­ным путём подбора) и сделать начальный прогноз и оценку тенденций.

Таблица 4. Экспоненциальное сглаживание тенденции.

Тема 3. Сглаживание и прогнозирование временных рядов на основе трендовых моделей

Целью изучения данной темы является создание базовой основы подготовки менеджеров по специальности 080507 в области построения моделей различных задач в сфере экономики, формирования у студентов систематизированного подхода к постановке и решению задач прогнозирования. Предлагаемый курс позволит специалистам быстрее адаптироваться к практической работе, лучше ориентироваться в научно-технической информации и литературе по специальности, увереннее принимать решения, возникающие в работе.

Основными задачами изучения темы являются: получение студентами углубленных теоретических знаний по применению моделей прогноза, приобретение ими устойчивых навыков выполнения научно-исследовательских работ, умение решать сложные научные проблемы, связанные с построением моделей, включая и многомерные, способности к логическому анализу полученных результатов и определению путей поиска приемлемых решений.

Достаточно простым методом выявления тенденции развития является сглаживание временного ряда, т. е. замена фактических уровней расчетными, имеющими меньшие вариации, чем исходные данные. Соответствующее преобразование называется фильтрованием . Рассмотрим несколько методов сглаживания.

3.1. Простые средние

Целью сглаживания является построение модели прогнозирования для последующих периодов, исходя из прошлых наблюдений. В методе простых средних за начальные данные принимаются значения переменной Y в моменты времени t , а прогнозное значение определяется как простое среднее на следующий временной период. Расчетная формула имеет вид

где n — число наблюдений.

В случае, когда становится доступным новое наблюдение, для прогнозирования на следующий период следует учесть и вновь полученный прогноз. При использовании этого метода прогноз осуществляется путем усреднения всех предыдущих данных, однако недостатком такого прогнозирования является трудность его использования в трендовых моделях.

3.2. Метод скользящих средних

Данный метод основан на представлении ряда в виде суммы достаточно гладкого тренда и случайного компонента. В основе метода лежит идея расчета теоретического значения на основе локального приближения. Для построения оценки тренда в точке t по значениям ряда из временного интервала рассчитывают теоретическое значение ряда. Наибольшее распространение в практике сглаживания рядов получил случай, когда все веса для элементов интервала равны между собой. По этой причине этот метод называют методом скользящих средних, так как при выполнении процедуры происходит скольжение окном шириной (2 m + 1) по всему ряду. Ширину окна обычно берут нечетной, так как теоретическое значение рассчитывается для центрального значения: количество слагаемых k = 2m + 1 с одинаковым числом уровней слева и справа от момента t.

Формула для расчета скользящей средней в этом случае принимает вид:

Дисперсия cкользящей средней определяется как σ 2 /k, где через σ 2 обозначена дисперсия исходных членов ряда, а k — интервал сглаживания, поэтому чем больше интервал сглаживания, тем сильнее усреднение данных и менее изменчива выделяемая тенденция. Чаще всего сглаживание производят по трем, пяти и семи членам исходного ряда. При этом следует учитывать следующие особенности скользящей средней: если рассмотреть ряд с периодическими колебаниями постоянной длины, то при сглаживании на основе скользящей средней с интервалом сглаживания, равным или кратным периоду, колебания полностью устранятся. Нередко сглаживание на основе скользящей средней столь сильно преобразует ряд, что выделенная тенденция развития проявляется лишь в самых общих чертах, а более мелкие, но важные для анализа детали (волны, изгибы и т. д.) исчезают; после сглаживания мелкие волны могут иногда поменять направление на противоположное — на месте «пиков» появляются «ямы», и наоборот. Все это требует осторожности в применении простой скользящей средней и заставляет искать более тонкие методы описания.

Метод скользящих средних не дает значений тренда для первых и последних m членов ряда. Этот недостаток особенно заметно сказывается в случае, когда длина ряда невелика.

3.3. Экспоненциальное сглаживание

Экспоненциальная средняя y t является примером асимметричной взвешенной скользящей средней, в которой учитывается степень старения данных: более «старая» информация с меньшим весом входит в формулу для расчета сглаженного значения уровня ряда

Здесь — экспоненциальная средняя, заменяющая наблюдаемое значение ряда y t (в сглаживании участвуют все данные, полученные к текущему моменту t ), α — параметр сглаживания, характеризующий вес текущего (самого нового) наблюдения; 0 < α <1.

Метод применяется для прогнозирования нестационарных временных рядов, имеющих случайные изменения уровня и угла наклона. По мере удаления от текущего момента времени в прошлое вес соответствующего члена ряда быстро (экспоненциально) уменьшается и практически перестает оказывать какое-либо влияние на значение .

Легко получить, что Последнее соотношение позволяет дать следующую интерпретацию экспоненциальной средней: если — прогноз значения ряда y t , то разность есть погрешность прогноза. Таким образом, прогноз для следующего момента времени t + 1 учитывает ставшую известной в момент t ошибку прогноза.

Параметр сглаживания α является взвешивающим фактором. В случае, если α близко к единице, то в прогнозе существенно учитывается величина ошибки последнего прогнозирования. При малых значениях α прогнозируемая величина близка к предыдущему прогнозу. Выбор параметра сглаживания представляет собой достаточно сложную проблему. Общие соображения таковы: метод хорош для прогнозирования достаточно гладких рядов. В этом случае можно выбрать сглаживающую константу путем минимизации ошибки прогноза на один шаг вперед, оцененной по последней трети ряда. Некоторые специалисты не рекомендуют использовать большие значения параметра сглаживания. На рис. 3.1 показан пример сглаженного ряда методом экспоненциального сглаживания при α= 0,1.

Рис. 3.1. Результат экспоненциального сглаживания при α =0,1
(1 — исходный ряд; 2 — сглаженный ряд; 3 — остатки)

3.4. Экспоненциальное сглаживание
с учетом тренда (метод Хольта)

В этом методе учитывается локальный линейный тренд, имеющийся во временных рядах. Если во временных рядах есть тенденция к росту, то вместе с оценкой текущего уровня необходима и оценка наклона. В методике Хольта значения уровня и наклона сглаживаются непосредственно путем использования различных постоянных для каждого из параметров. Постоянные сглаживания позволяют оценить текущий уровень и наклон, уточняя их всякий раз при появлении новых наблюдений.

В методе Хольта используются три расчетных формулы:

  1. Экспоненциально сглаженный ряд (оценка текущего уровня)

(3.2)

  1. Оценка тренда

(3.3)

  1. Прогноз на р периодов вперед

(3.4)

где α, β — постоянные сглаживания из интервала .

Уравнение (3.2) похоже на уравнение (3.1) для простого экспоненциального сглаживания за исключением члена, учитывающего тренд. Постоянная β нужна для сглаживания оценки тренда. В уравнении прогноза (3.3) оценка тренда умножается на число периодов р , на которое строится прогноз, а затем это произведение складывается с текущим уровнем сглаженных данных.

Постоянные α и β выбираются субъективно или путем минимизации ошибки прогнозирования. Чем большие значения весов будут взяты, тем более быстрый отклик на происходящие изменения будет иметь место и большему сглаживанию подвергаются данные. Меньшие веса делают структуру сглаженных значений менее ровной.

На рис. 3.2 приведен пример сглаживания ряда по методу Хольта при значениях α и β , равных 0,1.

Рис. 3.2. Результат сглаживания по методу Хольта
при α = 0,1 и β = 0,1

3.5. Экспоненциальное сглаживание с учетом тренда и сезонных вариаций (метод Винтерса)

При наличии в структуре данных сезонных колебаний для уменьшения ошибок прогнозирования используется трехпараметрическая модель экспоненциального сглаживания, предложенная Винтерсом. Этот подход является расширением предыдущей модели Хольта. Для учета сезонных вариаций здесь применяется дополнительное уравнение, и полностью этот метод описывается четырьмя уравнениями:

  1. Экспоненциально сглаженный ряд

(3.5)

  1. Оценка тренда

(3.6)

  1. Оценка сезонности

.

(3.7)

  1. Прогноз на р периодов вперед

(3.8)

где α, β, γ — постоянные сглаживания для уровня, тренда и сезонности, соответственно; s - длительность периода сезонного колебания.

Уравнение (3.5) корректирует сглаженные ряды. В этом уравнении член учитывает сезонность в исходных данных. После учета сезонности и тренда в уравнениях (3.6), (3.7) оценки сглаживаются, а в уравнении (3.8) делается прогноз.

Так же, как и в предыдущем способе, веса α, β, γ могут выбираться субъективно или путем минимизации ошибки прогнозирования. Перед применением уравнения (3.5) необходимо определить начальные значения для сглаженного ряда L t , тренда T t , коэффициентов сезонности S t . Обычно начальное значение сглаженного ряда принимается равным первому наблюдению, тогда тренд равен нулю, а коэффициенты сезонности устанавливаются равными единице.

На рис. 3.3 показан пример сглаживания ряда по методу Винтерса.

Рис. 3.3. Результат сглаживания по методу Винтерса
при α = 0,1 = 0,1; γ = 0,1 (1- исходный ряд; 2 — сглаженный ряд; 3 — остатки)

3.6. Прогнозирование на основе трендовых моделей

Довольно часто временные ряды имеют линейную тенденцию (тренд). При предположении линейной тенденции нужно построить прямую линию, которая наиболее точно отображала бы изменение динамики за рассматриваемый период. Есть несколько методов построения прямой линии, но наиболее объективным с формальной точки зрения будет построение, основанное на минимизации суммы отрицательных и положительных отклонений исходных значений ряда от прямой линии.

Прямую линию в системе двух координат (х,у) можно определить точкой пересечения одной из координат у и углом наклона к оси х. Уравнение такой прямой будет выглядеть как где a - точка пересечения; b — угол наклона.

Для того чтобы прямая отображала ход динамики, необходимо минимизировать сумму вертикальных отклонений. При использовании в качестве критерия оценки минимизации простой суммы отклонений получится не очень хороший результат, так как отрицательные и положительные отклонения взаимно компенсируют друг друга. Минимизация суммы абсолютных значений также не приводит к удовлетворительным результатам, поскольку оценки параметров в этом случае неустойчивы, имеются также вычислительные трудности при реализации такой процедуры оценивания. Поэтому наиболее часто используемой процедурой является минимизация суммы квадратов отклонений или метод наименьших квадратов (МНК).

Поскольку ряд исходных значений имеет колебания, то модель ряда будет содержать ошибки, квадраты которых надо минимизировать

где y i — наблюдаемое значение; y i * — теоретические значения модели; — номер наблюдения.

При моделировании тенденции исходного временного ряда с помощью линейного тренда примем, что

Поделив первое уравнение на n , приходим к следующему

Подставив полученное выражение во второе уравнение системы (3.10), для коэффициента b * получим:

3.7. Проверка соответствия модели

В качестве примера на рис. 3.4 приведен график линейной регрессии между мощностью автомобиля х и его стоимостью у .

Рис. 3.4. График линейной регрессии

Уравнение для этого случая имеет вид: у =1455,3 + 13,4 х . Визуальный анализ этого рисунка показывает, что для ряда наблюдений имеются значительные отклонения от теоретической кривой. График остатков показан на рис. 3.5.

Рис. 3.5. График остатков

Анализ остатков линии регрессии может представлять полезную меру того, насколько оцененная регрессия отражает реальные данные. Хорошая регрессия та, которая объясняет значительную долю дисперсии и, наоборот, плохая регрессия не отслеживает большую величину колебаний исходных данных. Интуитивно ясно, что всякая дополнительная информация позволит улучшить модель, т. е. уменьшить необъясненную долю вариации переменной у . Для анализа регрессионной проведем разложение дисперсии на составляющие. Очевидно, что

Последнее слагаемое будет равно нулю, так как представляет собой сумму остатков, поэтому приходим к следующему результату

где SS 0 , SS 1 , SS 2 определяют соответственно общую, регрессионную и остаточную суммы квадратов.

Регрессионная сумма квадратов измеряет часть дисперсии, объясняемую линейной зависимостью; остаточная — часть дисперсии, не объясняемую линейной зависимостью.

Каждая из этих сумм характеризуется соответствующим числом степеней свободы (ЧСС), которое определяет число единиц данных, независимых друг от друга. Иначе говоря, ЧСС связано с числом наблюдений n и числом вычисляемых по совокупности данных параметров. В рассматриваемом случае для расчета SS 0 определяется только одна постоянная (среднее значение), следовательно ЧСС для SS 0 составит (n 1), ЧСС для SS 2 – (n – 2) и ЧСС для SS 1 составит n – (n – 1)=1 , так как в уравнении регрессии имеется n – 1 постоянных точек. Так же, как и суммы квадратов, ЧСС связаны соотношением

Суммы квадратов, связанные с разложением дисперсии, вместе с соответствующими ЧСС могут быть размещены в так называемой таблице анализа дисперсий (таблица ANOVA — ANalysis Of VAriance) (табл. 3.1).

Таблица 3.1

Таблица ANOVA

Источник

Сумма квадратов

Средний квадрат

Регрессия

SS 2 / (n-2)

С помощью введенной аббревиатуры для сумм квадратов определим коэффициент детерминации как отношение суммы квадратов регрессии к общей сумме квадратов в виде

(3.13)

Коэффициент детерминации измеряет долю изменчивости переменной Y , которую можно объяснить с помощью информации об изменчивости независимой переменной X. Коэффициент детерминации изменяется от нуля, когда Х не влияет на Y, до единицы, когда изменение Y полностью объясняется изменением X.

3.8. Регрессионная модель прогноза

Лучшим считается прогноз, имеющий минимальную дисперсию. В нашем случае обычный МНК производит наилучший прогноз из всех методов, дающих несмещенные оценки на основе линейных уравнений. Ошибка прогноза, связанная с процедурой прогнозирования, может исходить от четырех источников.

Во-первых, случайная природа аддитивных ошибок, обрабатываемых линейной регрессией, гарантирует, что прогноз будет отклоняться от истинных величин даже если модель правильно специфицирована и ее параметры точно известны.

Во-вторых, сам процесс оценки вносит ошибку в оценку параметров — они редко могут быть равны истинным значениям, хотя равны им в среднем.

В-третьих, в случае условного прогноза (в случае неизвестных точно значений независимых переменных) ошибка вносится с прогнозом объясняющих переменных.

В-четвертых, ошибка может появиться из-за того, что спецификация модели неточна.

В итоге, источники ошибки можно классифицировать следующим образом:

  1. природа переменной;
  2. природа модели;
  3. ошибка, вносимая прогнозом независимых случайных величин;
  4. ошибка спецификации.

Будем рассматривать безусловный прогноз, когда независимые переменные легко и точно прогнозируются. Начнем рассмотрение проблемы качества прогноза с уравнения парной регрессии.

Постановку задачи в этом случае можно сформулировать следующим образом: каким будет наилучший прогноз y T+1 при условии, что в модели y = a + bx параметры а и b оценены точно, а значение x T+1 — известно.

Тогда прогнозное значение можно определить как

Ошибка прогноза при этом составит

.

Ошибка прогноза обладает двумя свойствами:

Полученная дисперсия минимальна среди всех возможных оценок, основанных на линейных уравнениях.

Хотя а и b известны, ошибка прогноза появляется за счет того, что у T+1 может не лежать на линии регрессии из-за ошибки ε T+1 , подчиняющейся нормальному распределению с нулевым средним и дисперсией σ 2 . Для проверки качества прогноза введем нормализованную величину

Тогда можно определить 95 %-ный доверительный интервал в следующем виде:

где β 0,05 — квантили нормального распределения.

Границы 95 %-ного интервала можно определить как

Отметим, что в этом случае ширина доверительного интервала не зависит от величины х, и границы интервала представляют собой прямые линии, параллельные линии регрессии.

Чаще при построении линии регрессии и проверке качества прогноза надо оценивать не только параметры регрессии, но и дисперсию ошибки прогноза. Можно показать , что в этом случае дисперсия ошибки зависит от величины (), где — среднее значение независимой переменной. Кроме того, чем больше длина ряда, тем точнее прогноз. Ошибка прогноза уменьшается, если значение X T+1 близко к средней величине независимой переменной, и, наоборот, при удалении от среднего значения прогноз становится менее точным. На рис. 3.6 показаны результаты прогноза с помощью уравнения линейной регрессии на 6 интервалов времени вперед вместе с доверительными интервалами.

Рис. 3.6. Прогноз по уравнению линейной регрессии

Как видно из рис. 3.6, эта линия регрессии недостаточно хорошо описывает исходные данные: наблюдается большая вариация относительно подгоночной прямой. О качестве модели можно судить также по остаткам, которые при удовлетворительной модели должны быть распределены примерно по нормальному закону. На рис. 3.7 приведен график остатков, построенный с помощью вероятностной шкалы.

Рис.3.7. График остатков

При использовании такой шкалы данные, подчиняющиеся нормальному закону, должны лежать на прямой линии. Как следует из приведенного рисунка, точки в начале и конце периода наблюдений несколько отклоняются от прямой линии, что свидетельствует о недостаточно высоком качестве выбранной модели в виде уравнения линейной регрессии.

В табл. 3.2 приведены результаты прогноза (вторая колонка) вместе с доверительными 95 %-ными интервалами (нижним — третья и верхним — четвертая колонки соответственно).

Таблица 3.2

Результаты прогноза

3.9. Многомерная регрессионная модель

При многомерной регрессии данные для каждого случая включают значения зависимой переменной и каждой независимой переменной. Зависимая переменная y — это случайная величина, связанная с независимыми переменными следующим соотношением:

где — коэффициенты регрессии, подлежащие определению; ε — компонент ошибки, соответствующий отклонению значений зависимой переменной от истинного соотношения (предполагается, что ошибки независимы и имеют нормальное распределение с нулевым математическим ожиданием и неизвестной дисперсией σ ).

Для заданного набора данных оценки коэффициентов регрессии можно найти с помощью МНК. Если оценки МНК обозначить через , то соответствующая функция регрессии будет иметь вид:

Остатки являются оценками компонента ошибки и подобны остаткам в случае простой линейной регрессии.

Статистический анализ модели многомерной регрессии проводится аналогично анализу простой линейной регрессии. Стандартные пакеты статистических программ позволяют получить оценки по МНК для параметров модели, оценки их стандартных ошибок. Кроме того, можно получить значение t -статистики для проверки значимости отдельных слагаемых регрессионной модели и величину F -статистики для проверки значимости регрессионной зависимости.

Форма разбиения сумм квадратов в случае многомерной регрессии аналогична выражению (3.13), но соотношение для ЧСС будет следующим

Подчеркнем еще раз, что n представляет собой объем наблюдений, а k — число переменных в модели. Общая вариация зависимой переменной состоит из двух составляющих: вариации, объясненной независимыми переменными через функцию регрессии, и необъясненной вариации.

Таблица ANOVA для случая многомерной регрессии будет иметь вид, показанный в табл. 3.3.

Таблица 3.3

Таблица ANOVA

Источник

Сумма квадратов

Средний квадрат

Регрессия

SS 2 / (n-k-1)

В качестве примера многомерной регрессии воспользуемся данными из пакета Statistica (файл данных Poverty.Sta) Приведенные данные основаны на сравнении результатов переписи 1960 и 1970 гг. для случайной выборки из 30 стран. Названия стран были введены как названия строк, а названия всех переменных этого файла приведены ниже:

POP_CHNG — изменение населения за 1960-1970 гг.;

N_EMPLD — количество людей, занятых в сельском хозяйстве;

PT_POOR — процент семей, живущих ниже уровня бедности;

TAX_RATE — ставка налога;

PT_PHONE — процент квартир с телефоном;

PT_RURAL — процент сельского населения;

AGE — средний возраст.

В качестве зависимой переменной выберем признак Pt_Poor , а в качестве независимых - все остальные. Рассчитанные коэффициенты регрессии между выделенными переменными приведены в табл. 3.4

Таблица 3.4

Регрессионные коэффициенты

Эта таблица показывает регрессионные коэффициенты (В ) и стандартизованные регрессионные коэффициенты (Beta ). С помощью коэффициентов В устанавливается вид уравнения регрессии, которое в данном случае имеет вид:

Включение в правую часть только этих переменных обусловлено тем, что лишь эти признаки имеют значение вероятности р меньше, чем 0,05 (см. четвертый столбец табл. 3.4).

Библиография

  1. Басовский Л. Е. Прогнозирование и планирование в условиях рынка. – М.: Инфра - М, 2003.
  2. Бокс Дж., Дженкинс Г. Анализ временных рядов. Вып.1. Прогноз и управление. – М.: Мир, 1974.
  3. Боровиков В. П., Ивченко Г. И. Прогнозирование в системе Statistica в среде Windows. – М.: Финансы и статистика, 1999.
  4. Дюк В. Обработка данных на ПК в примерах. – СПб.: Питер, 1997.
  5. Ивченко Б. П., Мартыщенко Л. А., Иванцов И. Б. Информационная микроэкономика. Часть 1. Методы анализа и прогнозирования. – СПб.: Нордмед-Издат, 1997.
  6. Кричевский М. Л. Введение в искусственные нейронные сети: Учеб. пособие. – СПб.: СПб. гос. морской техн. ун-т, 1999.
  7. Сошникова Л. А., Тамашевич В. Н., Уебе Г. и др. Многомерный статистический анализ в экономике. – М.: Юнити-Дана, 1999.

Экспоненциальное сглаживание - способ сглаживания временных рядов, вычислительная процедура которого включает обработку всех предыдущих наблюдений, при этом учитывается устаревание информации по мере удаления от прогнозного периода. Иначе говоря, чем "старше" наблюдение, тем меньше оно должно влиять на величину прогнозной оценки. Идея экспоненциального сглаживания состоит в том, что по мере "старения" соответствующим наблюдениям придаются убывающие веса.

Данный метод прогнозирования считается весьма эффективным и падежным. Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным моментом является выбор параметра сглаживания (сглаживающей константы) и начальных условий.

Простое экспоненциальное сглаживание временных рядов, содержащих тренд, приводит к систематической ошибке, связанной с отставанием сглаженных значений от фактических уровней временного ряда. Для учета тренда в нестационарных рядах применяется специальное двухпараметрическое линейное экспоненциальное сглаживание. В отличие от простого экспоненциального сглаживания с одной сглаживающей константой (параметром) данная процедура сглаживает одновременно случайные возмущения и тренд с использованием двух различных констант (параметров). Двухпараметрический метод сглаживания (метод Хольта) включает два уравнения. Первое предназначено для сглаживания наблюденных значений, а второе -для сглаживания тренда:

где I - 2, 3, 4 - периоды сглаживания; 5, - сглаженная величина на период £; У, - фактическое значение уровня на период 1 5, 1 - сглаженное значение на период Ь-Ьг- сглаженное значение тренда на период 1 - сглаженное значение на период I- 1; А и В - сглаживающие константы (числа между 0 и 1).

Сглаживающие константы А и В характеризуют фактор взвешивания наблюдений. Обычно Л, В < 0,3. Так как (1 - А) < 1, (1 - В) < 1, то они убывают по экспоненциальному закону по мере удаления наблюдения от текущего периода I. Отсюда данная процедура получила название экспоненциально сглаживания.

Уравнение добавляется в общую процедуру для сглаживания тренда. Каждая новая оценка тренда получается как взвешенная сумма разности между последними двумя сглаженными значениями (текущая оценка тренда) и предыдущей сглаженной оценки. Данное уравнение позволяет существенно сократить влияние случайных возмущений на тренд с течением времени.

Прогнозирование с использованием экспоненциального сглаживания подобно процедуре "наивного" прогнозирования, когда прогнозная оценка на завтра полагается равной сегодняшнему значению. В данном случае в качестве прогноза на один период вперед рассматривается сглаженная величина на текущий период плюс текущее сглаженное значение тренда:

Данную процедуру можно использовать для прогнозирования на любое число периодов, на пример на т периодов:

Процедура прогнозирования начинается с того, что сглаженная величина 51 полагается равной первому наблюдению У, т.е. 5, = У,.

Возникает проблема определения начального значения тренда 6]. Существуют два способа оценки Ьх.

Способ 1. Положим Ьх = 0. Такой подход хорошо работает в случае длинного исходного временного ряда. Тогда сглаженный тренд за небольшое число периодов приблизится к фактическому значению тренда.

Способ 2. Можно получить более точную оценку 6, используя первые пять (или более) наблюдений временного ряда. На их основе гю методу наименьших квадратов решается уравнение У(= а + Ь х г. Величина Ь берется в качестве начального значения тренда.

9 5. Метод экспоненциального сглаживания. Выбор постоянной сглаживания

При использовании метода наименьших квадратов для определения прогнозной тенденции (тренда) заранее предполагают, что все ретроспективные данные (наблюдения) обладают одинаковой информативностью. Очевидно, логичнее было бы учесть процесс дисконтирования исходной информации, то есть неравноценность этих данных для разработки прогноза. Это достигается в методе экспоненциального сглаживания путем придания последним наблюдения динамического ряда (то есть значениям, непосредственно предшествующим периоду упреждения прогноза) более значимых «весов» по сравнению с начальными наблюдениями. К достоинствам метода экспоненциального сглаживания следует также отнести простоту вычислительных операций и гибкость описания различных динамик процесса. Наибольшее применения метод нашел для реализации среднесрочных прогнозов .

5.1. Сущность метода экспоненциального сглаживания

Сущность метода состоит в том, что динамический ряд сглаживается с помощью взвешенной «скользящей средней», в которой веса подчиняются экспоненциальному закону. Другими словами, чем дальше от конца временного ряда отстоит точка, для которой вычисляется взвешенная скользящая средняя, тем меньше «участия она принимает» в разработке прогноза.

Пусть исходный динамический ряд состоит из уровней (составляющих ряда) y t , t = 1 , 2 ,...,n . Для каждыхm последовательных уровней этого ряда

(m

динамическому ряду с шагом, равным единице. Если m – нечетное число, а предпочтительно брать нечетное число уровней, поскольку в этом случае расчетное значение уровня окажется в центре интервала сглаживания и им легко заменить фактическое значение, то для определения скользящей средней можно записать следующую формулу:

t+ ξ

t+ ξ

∑ y i

∑ y i

i= t− ξ

i= t− ξ

2ξ + 1

где y t – значение скользящей средней для моментаt (t = 1 , 2 ,...,n );y i – фактическое значение уровня в моментi ;

i – порядковый номер уровня в интервале сглаживания.

Величина ξ определяется из продолжительности интервала сглаживания.

Поскольку

m =2 ξ +1

при нечетном m , то

ξ = m 2 − 1 .

Расчет скользящей средней при большом числе уровней можно упростить, определяя последовательные значения скользящей средней рекурсивно:

y t= y t− 1 +

yt + ξ

− y t − (ξ + 1 )

2ξ + 1

Но исходя из того, что последним наблюдениям необходимо придать больший «вес», скользящее среднее нуждается в ином толковании. Оно заключается в том, что полученная с помощью усреднения величина заменяет не центральный член интервала усреднения, а его последний член. Соответственно этому последнее выражение можно переписать в виде

M i = Mi + 1

y i− y i− m

Здесь скользящая средняя, относимая к концу интервала, обозначена новым символом M i . По существу,M i равноy t , сдвинутому наξ шагов вправо, то естьM i = y t + ξ , гдеi = t + ξ .

Учитывая, что M i − 1 является оценкой величиныy i − m , выражение (5.1)

можно переписать в виде

y i+ 1

M i − 1 ,

M i , определяемой выражением (5.1).

где M i является оценкой

Если вычисления (5.2) повторять по мере поступления новой информации

и переписать в ином виде, то получим сглаженную функцию наблюдений:

Q i= α y i+ (1 − α ) Q i− 1 ,

или в эквивалентной форме

Q t= α y t+ (1 − α ) Q t− 1

Вычисления, проводимые по выражению (5.3) с каждым новым наблюдением, называются экспоненциальным сглаживанием. В последнем выражении для отличия экспоненциального сглаживания от скользящего среднего введено обозначение Q вместоM . Величинаα , являющаяся

аналогом m 1 , называется постоянной сглаживания. Значенияα лежат в

интервале [ 0 , 1 ] . Еслиα представить в виде ряда

α + α(1 − α) + α(1 − α) 2 + α(1 − α) 3 + ... + α(1 − α) n ,

то нетрудно заметить, что «веса» убывают по экспоненциальному закону во времени. Например, для α = 0 , 2 получим

0,2 + 0,16 + 0,128 + 0,102 + 0,082 + …

Сумма ряда стремится к единице, а члены суммы убывают со временем.

Величина Q t в выражении (5.3) представляет собой экспоненциальную среднюю первого порядка, то есть среднюю, полученную непосредственно при

сглаживании данных наблюдения (первичное сглаживание). Иногда при разработке статистических моделей полезно прибегнуть к расчету экспоненциальных средних более высоких порядков, то есть средних, получаемых путем многократного экспоненциального сглаживания.

Общая запись в рекуррентной форме экспоненциальной средней порядка k имеет вид

Q t (k)= α Q t (k− 1 )+ (1 − α ) Q t (− k1 ).

Величина k изменяется в пределах1, 2, …, p ,p+1 , гдеp – порядок прогнозного полинома (линейного, квадратичного и так далее).

На основе этой формулы для экспоненциальной средней первого, второго и третьего порядков получены выражения

Q t (1 )= α y t + (1 − α ) Q t (− 1 1 );

Q t (2 )= α Q t (1 )+ (1 − α ) Q t (− 2 1 ); Q t (3 )= α Q t (2 )+ (1 − α ) Q t (− 3 1 ).

5.2. Определение параметров прогнозной модели методом экспоненциального сглаживания

Очевидно, что для разработки прогнозных значений на основе динамического ряда методом экспоненциального сглаживания необходимо вычислить коэффициенты уравнения тренда через экспоненциальные средние. Оценки коэффициентов определяются по фундаментальной теореме БраунаМейера, связывающей коэффициенты прогнозирующего полинома с экспоненциальными средними соответствующих порядков:

(− 1 )

aˆ p

α (1 − α )∞

−α )

j (p − 1 + j ) !

∑ j

p= 0

p! (k− 1 ) !j = 0

где aˆ p – оценки коэффициентов полинома степенир .

Коэффициенты находятся решением системы (p + 1 ) уравнений сp + 1

неизвестными.

Так, для линейной модели

aˆ 0 = 2 Q t (1 ) − Q t (2 ) ; aˆ 1 = 1 − α α (Q t (1 )− Q t (2 )) ;

для квадратичной модели

aˆ 0 = 3 (Q t (1 )− Q t (2 )) + Q t (3 );

aˆ 1 =1 − α α [ (6 −5 α ) Q t (1 ) −2 (5 −4 α ) Q t (2 ) +(4 −3 α ) Q t (3 ) ] ;

aˆ 2 = (1 − α α ) 2 [ Q t (1 )− 2 Q t (2 )+ Q t (3 )] .

Прогноз реализуется по выбранному многочлену соответственно для линейной модели

ˆyt + τ = aˆ0 + aˆ1 τ ;

для квадратичной модели

ˆyt + τ = aˆ0 + aˆ1 τ + aˆ 2 2 τ 2 ,

где τ – шаг прогнозирования.

Необходимо отметить, что экспоненциальные средние Q t (k ) можно вычислить только при известном (выбранном) параметре, зная начальные условияQ 0 (k ) .

Оценки начальных условий, в частности, для линейной модели

Q (1 )= a

1 − α

Q(2 ) = a− 2 (1 − α ) a

для квадратичной модели

Q (1 )= a

1 − α

+ (1 − α )(2 − α ) a

2(1− α )

(1− α )(3− 2α )

Q 0(2 ) = a 0−

2α 2

Q (3 )= a

3(1− α )

(1 − α )(4 − 3 α ) a

где коэффициенты a 0 иa 1 вычисляются методом наименьших квадратов.

Величина параметра сглаживания α приближенно вычисляется по формуле

α ≈ m 2 + 1 ,

где m – число наблюдений (значений) в интервале сглаживания. Последовательность вычисления прогнозных значений представлена на

Расчет коэффициентов ряда методом наименьших квадратов

Определение интервала сглаживания

Вычисление постоянной сглаживания

Вычисление начальных условий

Вычисление экспоненциальных средних

Вычисление оценок a 0 , a 1 и т.д.

Расчет прогнозных значений ряда

Рис. 5.1. Последовательность вычисления прогнозных значений

В качестве примера рассмотрим процедуру получения прогнозного значения безотказной работы изделия, выражаемой наработкой на отказ.

Исходные данные сведены в табл. 5.1.

Выбираем линейную модель прогнозирования в виде y t = a 0 + a 1 τ

Решение осуществим со следующими значениями начальных величин:

a 0 , 0 = 64, 2; a 1 , 0 = 31, 5; α = 0, 305.

Таблица 5.1. Исходные данные

Номер наблюдения, t

Длина шага, прогнозирования, τ

Наработка на отказ, y (час)

При этих значениях вычисленные «сглаженные» коэффициенты для

величины y 2 будут равны

= α Q (1 )− Q (2 )= 97 , 9 ;

[ Q (1 )− Q (2 )

31, 9 ,

1− α

при начальных условиях

1 − α

A 0 , 0 −

a 1, 0

= −7 , 6

1 − α

= −79 , 4

и экспоненциальных средних

Q (1 )= α y + (1 − α ) Q (1 )

25, 2;

Q (2 )

= α Q (1 )

+ (1 −α ) Q (2 ) = −47 , 5 .

«Сглаженная» величина y 2 при этом вычисляется по формуле

Q i (1 )

Q i (2 )

a 0 ,i

a 1 ,i

ˆyt

Таким образом (табл. 5.2), линейная прогнозная модель имеет вид

ˆy t + τ = 224, 5+ 32τ .

Вычислим прогнозные значения для периодов упреждения в 2 года (τ = 1 ), 4 года (τ = 2 ) и так далее наработки на отказ изделия (табл. 5.3).

Таблица 5.3. Прогнозные значенияˆy t

Уравнение

t + 2

t + 4

t + 6

t + 8

t + 20

регрессии

(τ = 1 )

(τ = 2 )

(τ = 3 )

(τ = 5 )

τ =

ˆy t = 224, 5+ 32τ

Следует отметить, что суммарный «вес» последних m значений временного ряда можно вычислить по формуле

c = 1 − (m (− 1 ) m ) . m+ 1

Так, для двух последних наблюдений ряда (m = 2 ) величинаc = 1 − (2 2 − + 1 1 ) 2 = 0 , 667 .

5.3. Выбор начальных условий и определение постоянной сглаживания

Как следует из выражения

Q t= α y t+ (1 − α ) Q t− 1 ,

при проведении экспоненциального сглаживания необходимо знать начальное (предыдущее) значение сглаживаемой функции. В некоторых случаях за начальное значение можно взять первое наблюдение, чаще начальные условия определяются согласно выражениям (5.4) и (5.5). При этом величины a 0 , 0 ,a 1 , 0

и a 2 , 0 определяются методом наименьших квадратов.

Если мы не очень доверяем выбранному начальному значению, то, взяв большое значение постоянной сглаживания α черезk наблюдений, мы доведем

«вес» начального значения до величины (1 − α ) k << α , и оно будет практически забыто. Наоборот, если мы уверены в правильности выбранного начального значения и неизменности модели в течение определенного отрезка времени в будущем,α может быть выбрано малым (близким к 0).

Таким образом, выбор постоянной сглаживания (или числа наблюдений в движущейся средней) предполагает принятие компромиссного решения. Обычно, как показывает практика, величина постоянной сглаживания лежит в пределах от 0,01 до 0,3.

Известно несколько переходов, позволяющих найти приближенную оценку α . Первый вытекает из условия равенства скользящей и экспоненциальной средней

α = m 2 + 1 ,

где m – число наблюдений в интервале сглаживания. Остальные подходы связываются с точностью прогноза.

Так, возможно определение α исходя из соотношения Мейера:

α ≈ S y ,

где S y – среднеквадратическая ошибка модели;

S 1 – среднеквадратическая ошибка исходного ряда.

Однако использование последнего соотношения затруднено тем, что достоверно определить S y иS 1 из исходной информации весьма сложно.

Часто параметр сглаживания, а заодно и коэффициенты a 0 , 0 иa 0 , 1

подбирают оптимальными в зависимости от критерия

S 2 = α ∑ ∞ (1 − α ) j [ yij − ˆyij ] 2 → min

j= 0

путем решения алгебраической системы уравнений, которую получают, приравнивая к нулю производные

∂ S2

∂ S2

∂ S2

∂ a 0, 0

∂ a 1, 0

∂ a 2, 0

Так, для линейной модели прогнозирования исходный критерий равен

S 2 = α ∑ ∞ (1 − α ) j [ yij − a0 , 0 − a1 , 0 τ ] 2 → min.

j= 0

Решение этой системы с помощью ЭВМ не представляет никаких сложностей.

Для обоснованного выбора α также можно использовать процедуру обобщенного сглаживания, которая позволяет получить следующие соотношения, связывающие дисперсию прогноза и параметр сглаживания для линейной модели:

S п 2 ≈[ 1 + α β ] 2 [ 1 +4 β +5 β 2 +2 α (1 +3 β ) τ +2 α 2 τ 3 ] S y 2

для квадратичной модели

S п 2≈ [ 2 α + 3 α 3+ 3 α 2τ ] S y 2,

где β = 1 α ;S y – СКО аппроксимации исходного динамического ряда.

1. Основные методические положения.

В методе простого экспоненциального сглаживания применяется взвешенное (экспоненциально) скользящее усреднение всех данных предыдущих наблюдений. Эта модель чаще всего применяется к данным, в которых необходимо оценить наличие зависимости между анализируемыми показателями (тренда) или зависимость анализируемых данных. Целью экспоненциального сглаживания является оценка текущего состояния, результаты которого определят все последующие прогнозы.

Экспоненциальное сглаживание предусматривает постоянное обновление модели за счет наиболее свежих данных. Этот метод основывается на усреднении (сглаживании) временных рядов прошлых наблюдений в нисходящем (экспоненциально) направлении. То есть более поздним событиям присваивается больший вес. Вес присваивается следующим образом: для последнего наблюдения весом будет величина α, для предпоследнего – (1-α), для того, которое было перед ним, - (1-α) 2 и т.д.

В сглаженном виде новый прогноз (для периода времени t+1) можно представлять как взвешенное среднее последнего наблюдения величины в момент времени t и ее прежнего прогноза на этот же период t. Причем вес α присваивается наблюдаемому значению, а вес (1- α) – прогнозу; при этом полагается, что 0< α<1. Это правило в общем виде можно записать следующим образом.

Новый прогноз = [α*(последнее наблюдение)]+[(1- α)*последний прогноз]

где - прогнозируемое значение на следующий период;

α – постоянная сглаживания;

Y t – наблюдение величины за текущий период t;

Прежний сглаженный прогноз этой величины на период t.

Экспоненциальное сглаживание – это процедура для постоянного пересмотра результатов прогнозирования в свете самых последних событий.

Постоянная сглаживания α является взвешенным фактором. Ее реальное значение определяется тем, в какой мере текущее наблюдение должно влиять на прогнозируемую величину. Если α близко к 1, значит в прогнозе существенно учитывается величина ошибки последнего прогнозирования. И наоборот, при малых значениях α прогнозируемая величина наиболее близка к предыдущему прогнозу. Можно представить как взвешенное среднее значение всех прошлых наблюдений с весовыми коэффициентами, экспоненциально убывающими с «возрастом» данных.



Таблица 2.1

Сравнение влияния разных значений постоянных сглаживания

Постоянная α является ключом к анализу данных. Если требуется, чтобы спрогнозированные величины были стабильны и случайные отклонения сглаживались, необходимо выбирать малое значение α. Большое значение постоянной α имеет смысл в том случае, если нужна быстрая реакция на изменения в спектре наблюдений.

2. Практический пример проведения экспоненциального сглаживания.

Представлены данные компании по объему продаж (тыс. шт.) за семь лет, постоянная сглаживания взята равной 0,1 и 0,6. Данные за 7 лет составляют тестовую часть; по ним необходимо оценить эффективность каждой из моделей. Для экспоненциального сглаживания рядов начальное значение берется равным 500 (первое значение фактических данных или среднее значение за 3 -5 периодов записывается в сглаженное значения за 2 квартал).

Таблица 2.2

Исходные данные

Время Действительное значение (фактическое) Сглаженное значение Ошибка прогноза
год квартал 0,1 0,1
Excel по формуле
#Н/Д 0,00
500,00 -150,00
485,00 485,00 -235,00
461,50 461,50 -61,50
455,35 455,35 -5,35
454,82 454,82 -104,82
444,33 444,33 -244,33
419,90 419,90 -119,90
407,91 407,91 -57,91
402,12 402,12 -202,12
381,91 381,91 -231,91
358,72 358,72 41,28
362,84 362,84 187,16
381,56 381,56 -31,56
378,40 378,40 -128,40
365,56 365,56 184,44
384,01 384,01 165,99
400,61 400,61 -0,61
400,55 400,55 -50,55
395,49 395,49 204,51
415,94 415,94 334,06
449,35 449,35 50,65
454,41 454,41 -54,41
448,97 448,97 201,03
469,07 469,07 380,93

На рис. 2.1 представлен прогноз на основе экспоненциального сглаживания с постоянной сглаживания, равной 0,1.



Рис. 2.1. Экспоненциальное сглаживание

Решение в Excel.

1. Выберите меню «Сервис» – «Анализ данных». В списке «Инструменты анализа» выберите значение «Экспоненциальное сглаживание». Если в меню «Сервис» нет анализа данных, то необходимо установить «Пакет анализа». Для этого найти в «Параметрах» пункт «Настройки» и в появившемся диалоговом окне установить флажок на «Пакет анализа», нажать ОК.

2. На экране раскроется диалоговое окно, представленное на рис. 2.2.

3. В поле «входной интервал» введите значения исходных данных (плюс одна свободная ячейка).

4. Установите флажок «метки» (если в диапазоне ввода указаны названия столбцов).

5. Введите в поле «фактор затухания» значение (1-α).

6. В поле «входной интервал» введите значение ячейки, в которой хотели бы увидеть полученные значения.

7. Установите флажок «Опции» - «Вывод графика» для автоматического его построения.

Рис. 2.2. Диалоговое окно для экспоненциального сглаживания

3. Задание лабораторной работы.

Имеются исходные данные об объемах добычи нефтедобывающего предприятия за 2 года, представленные в таблице 2.3:

Таблица 2.3

Исходные данные

Проведите экспоненциальное сглаживание рядов. Коэффициент экспоненциального сглаживания примите равным 0,1; 0,2; 0,3. Полученные результаты прокомментируйте. Можно использовать статистические данные, представленные в приложении 1.