Термодинамическая шкала температур. Термодинамическая температура. температур. Абсолютная температура

Для измерения температуры применяются приборы, основанные на определении тех или иных физических свойств вещества, изменяющихся с изменением температуры. Эти приборы градуируются в соответствии с принятой температурной шкалой. Однако при установлении той или иной температурной шкалы возникают принципиальные трудности, связанные с тем, что свойства каждого вещества по-разному изменяются в одном и том же интервале температур. Например, конструкция многих термометров основана на явлении расширения жидкости при увеличении температуры; таковы хорошо известные термометры с ртутным или спиртовым столбиком, длина которого увеличивается с ростом температуры. Но значения температурного коэффициента расширения даже для одной и той же жидкости различны при различных температурах, что создает сложности при установлении температурной шкалы. В 1742 г. шведский физик А. Цельсий предложил приписать точке плавления льда температуру 0°, а точке кипения воды 100°, а интервал между ними разделить на сто равных частей*. Однако если разделить на сто равных частей столбик ртути между точками плавления льда и кипения воды, то, учитывая зависимость коэффициента расширения ртути от температуры, выясним, что одно и то же приращение длины столбика ртути будет соответствовать различным приращениям температур. Цена деления равномерной шкалы, построенной по различным термометрическим жидкостям, будет различной. Если, например, заполнить термометр водой, то при нагреве такого термометра от точки плавления льда можно увидеть удивительную картину: вместо того чтобы с повышением температуры перемещаться вверх, столбик воды начнет опускаться вниз ниже уровня, соответствующего точке плавления льда. Оказывается, плотность воды при атмосферном давлении имеет максимальное значение при температуре 3,98 °С. Следовательно, при нагреве от 0 до 3,98 °С объем воды будет уменьшаться (а значит, будет опускаться столбик водяного термометра) .

В Прошлом температурные шкалы устанавливались по различным термометрическим веществам, но затем было определено, что одним из наиболее удобных термометрических веществ является идеальный газ. В самом деле, уравнение Клапейрона позволяет определить температуру с помощью соотношения:

Если, например, измерить давление близкого по свойствам к идеальному газа, заключенного в сосуде постоянного объема (u=const), то таким образом можно установить температурную шкалу (так называемая идеально-газовая шкала) . Преимущество этой шкалы состоит в том, что давление идеального газа при v = const линейно изменяется с температурой.

В гл. I, рассматривая способы измерения температуры, мы отмечали, что при таких измерениях возникает серьезное затруднение. Оно заключается в том, что температурные шкалы, устанавливаемые с помощью различных термометрических тел, не совпадают друг с другом.

Сейчас мы, однако, познакомились с одним свойством, которое совершенно не зависит от рода вещества и которое поэтому может служить безупречным термометрическим свойством для установления температурной шкалы. Свойство это состоит в том, что любое вещество, если его использовать в качестве рабочего тела в обратимой тепловой машине, дает один и тот же коэффициент полезного действия (разумеется, при одних и тех же температурах нагревателя и холодильника).

Если рабочее тело, каково бы оно ни было, поглощает при температуре теплоту и отдает холодильнику при температуре теплоту то справедливо соотношение

Последнее соотношение, справедливое для любого вещества, позволяет использовать машину Карно в качестве своеобразного термометра. Правда, этот «термометр» позволяет определить лишь отношение двух температур а не сами температуры. Но если условиться о том, чтобы одной из этих температур приписать определенное численное значение или выбрать тем или иным образом

размер градуса, то тем самым будет определена и искомая температура.

Таким образом будет установлена температурная шкала, не зависящая от рода вещества, т. е. шкала, физически безупречная.

Поясним примером способ измерения температуры таким необычным «термометром». Пусть требуется измерить температуру некоторого тела, причем никаких термометров, кроме машины Карно, в нашем распоряжении нет.

Возьмем в качестве нагревателя в машине Карно резервуар тепла при температуре кипения воды (измерять эту температуру мы, разумеется, не будем, так как у нас нет термометра для этой цели), а в качестве холодильника - резервуар тепла при температуре тающего льда (которую мы по той же причине также не станем измерять). Условимся еще, что разность температур между нагревателем и холодильником мы разделим на 100 частей (градусов); мы могли бы выбрать и любое другое число, так же как и любые другие резервуары тепла. Кроме машины Карно нам потребуется еще калориметр для измерения количеств теплоты Ведь в «термометре» Карно термометрическая задача превращается в калориметрическую.

Проведем теперь обратимый цикл Карно между выбранными нами нагревателем и холодильником, используя любое рабочее тело (ведь от него ничего не зависит), и измерим количество теплоты Фиагр. полученное от нагревателя, и количество теплоты отданное холодильнику. Обозначим через и температуры (пока неизвестные) кипящей воды, тающего льда и исследуемого тела. Тогда мы можем написать:

Затем проведем еще раз цикл Карно, но с исследуемым телом в качестве холодильника и с прежним нагревателем, или, наоборот, с прежним холодильником, но с исследуемым телом в качестве нагревателя. Измерив опять теплоту, полученную от нагревателя которая останется такой же, как и в первом опыте, и теплоту отданную холодильнику, мы опять сможем написать соотношение

Мы имеем, таким образом, два уравнения (92.2) и (92.3) для определения трех величин и Но мы можем,

кроме того, написать третье уравнение, определяющее размер градуса:

Этих трех уравнений достаточно для определения искомой температуры и величин Тнагр и Тхол.

Остается еще добавить, что мы могли бы пустить нашу тепловую машину и в обратном направлении, так, чтобы она работала как холодильная машина. Тогда нам пришлось бы измерять количество тепла, переданное от холодильника к нагревателю, и величину внешней работы, потраченной на это.

Конечно, никто и никогда не измерял температуру таким необычным способом, к тому же и технически невыполнимым. Но в этом и нет нужды, потому что установленную с помощью машины Карно температурную шкалу можно воспроизвести, используя какое-нибудь конкретное вещество с хорошо известными свойствами. Таким веществом является, например, идеальный газ, для которого точно известно уравнение состояния. Как было показано, формула (92.1) получается, если использовать идеальный газ в качестве рабочего тела в машине Карно. Можно показать, что температуры, измеренные по шкале газового термометра, где температура получается из формулы

в точности совпадают с температурой, которая была бы получена, если бы был проведен описанный выше опыт.

Заметим, что температурная шкала, основанная на свойствах обратимой машины Карно, называется термодинамической шкалой температур. Она была предложена Кельвином и поэтому выраженные в этой шкале температуры измеряются в Кельвинах.

Что касается нуля термодинамической шкалы, то из формулы (80.12) видно, что нулем должна служить температура, при которой В этом случае коэффициент полезного действия машины Карно равен единице, и, следовательно, более низкой температуры быть не может, так как к. . п. д. не может превышать единицу.

Поскольку термодинамическая шкала температур совпадает со шкалой идеального газа, то и нуль шкалы Кельвина совпадает с абсолютным нулем температуры, определенным нами раньше. Следует, впрочем, заметить, что согласно второму началу термодинамики коэффициент полезного действия тепловой машины никогда не может быть равен единице: количество теплоты, полученной от нагревателя, не может быть целиком преобразовано в механическую работу. Поэтому и абсолютный нуль температуры не может быть достигнут.

(K) и отсчитывается по абсолютной термодинамической шкале (Кельвина). Абсолютная термодинамическая шкала является основной шкалой в физике и в уравнениях термодинамики.

Молекулярно-кинетическая теория, со своей стороны, связывает абсолютную температуру со средней кинетической энергией поступательного движения молекул идеального газа в условиях термодинамического равновесия:

\frac{1}{2} m\bar{v}^2 = \frac{3}{2}kT,

где m ─ масса молекулы, \bar{v} ─ средняя квадратичная скорость поступательного движения молекул , T ─ абсолютная температура, k ─ постоянная Больцмана .

История

Измерение температуры прошло долгий и трудный путь в своём развитии. Так как температура не может быть измерена непосредственно, то для её измерения использовали свойства термометрических тел, которые находились в функциональной зависимости от температуры. На этой основе были разработаны различные температурные шкалы, которые получили название эмпирических , а измеренная с их помощью температура называется эмпирической. Существенными недостатками эмпирических шкал являются отсутствие их непрерывности и несовпадение значений температур для разных термометрических тел: как между реперными точками, так и за их пределами. Отсутствие непрерывности эмпирических шкал связано с отсутствием в природе вещества, которое способно сохранять свои свойства во всём диапазоне возможных температур. В 1848 г. Томсон (лорд Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в её пределах эффективность идеальной тепловой машины была одинаковой. В дальнейшем, в 1854 г. он предложил использовать обратную функцию Карно для построения термодинамической шкалы, не зависящей от свойств термометрических тел. Однако, практическая реализация этой идеи оказалась невозможной. В начале XIX века в поисках «абсолютного» прибора для измерения температуры снова вернулись к идее идеального газового термометра, основанного на законах идеальных газов Гей-Люссака и Шарля. Газовый термометр в течение долгого времени был единственным способом воспроизведения абсолютной температуры. Новые направления в воспроизведении абсолютной температурной шкалы основаны на использовании уравнения Стефана ─ Больцмана в бесконтактной термометрии и уравнения Гарри (Харри) Найквиста ─ в контактной.

Физические основы построения термодинамической шкалы температур.

1. Термодинамическая шкала температур принципиально может быть построена на основании теоремы Карно, которая утверждает, что коэффициент полезного действия идеального теплового двигателя не зависит от природы рабочего тела и конструкции двигателя, и зависит только от температур нагревателя и холодильника.

\eta=\frac{Q_1-Q_2} {Q_1}=\frac{T_1-T_2} {T_1},

где Q_1 – количество теплоты полученной рабочим телом (идеальным газом) от нагревателя, Q_2 – количество теплоты отданное рабочим телом холодильнику, T_1, T_2 – температуры нагревателя и холодильника, соответственно.

Из приведённого выше уравнения следует соотношение:

\frac{ Q_{1} }{ Q_{2} } = \frac{ T_{1} }{ T_{2} }

Это соотношение может быть использовано для построения абсолютной термодинамической температуры . Если один из изотермических процессов цикла Карно Q_3 проводить при температуре тройной точки воды (реперная точка), установленной произвольно ─ T_3=273,16 K, то любая другая температура будет определяться по формуле T=273,16 \frac{Q}{ Q_{3} }. Установленная таким образом температурная шкала называется термодинамической шкалой Кельвина . К сожаленью, точность измерения количества теплоты невысока, что не позволяет реализовать вышеописанный способ на практике.

2. Абсолютная температурная шкала может быть построена, если использовать в качестве термометрического тела идеальный газ. В самом деле, из уравнения Клапейрона вытекает соотношение

T=\frac{pV}{R}

Если измерять давление газа, близкого по свойствам к идеальному, находящегося в герметичном сосуде постоянного объёма, то таким способом можно установить температурую шкалу, которая носит название идеально-газовой. Преимущество этой шкалы состоит в том, что давление идеального газа при V=const изменяется линейно с температурой. Поскольку даже сильно разреженные газы по своим свойствам несколько отличаются от идеального газа, то реализация идеально - газовой шкалы связана с определёнными трудностями.

3. В различных учебниках по термодинамике приводятся доказательства того, что температура, измеренная по идеально-газовой шкале, совпадает с термодинамической температурой. Следует, однако, оговориться: несмотря на то, что численно термодинамическая и идеально-газовая шкалы абсолютно идентичны, с качественной точки зрения между ними есть принципиальная разница. Только термодинамическая шкала является абсолютно независимой от свойств термометрического вещества.

4.Как уже было указано, точное воспроизведение термодинамической шкалы, а также идеально-газовой, сопряжено с серьёзными трудностями. В первом случае необходимо тщательно измерять количество теплоты, которая подводится и отводится в изотермических процессах идеального теплового двигателя. Такого рода измерения неточны. Воспроизедение термодинамической (идеально-газовой) температурной шкалы в диапазоне от 10 до 1337 K возможно с помощью газового термометра. При более высоких температурах заметно проявляется диффузия реального газа сквозь стенки резервуара, а при температурах в несколько тысяч градусов многоатомные газы распадаются на атомы. При ещё больших температурах реальные газы ионизируются и превращаются в плазму, которая не подчиняется уравнению Клапейрона. Наиболее низкая температура, которая может быть измерена газовым термометром, заполненным гелием при низком давлении равна 1K. Для измерения температур за пределами возможностей газовых термометров используют специальные методы измерения. Подробнее см. Термометрия .

Напишите отзыв о статье "Термодинамическая температура"

Примечания

Литература

  • Украинская советская энциклопедия : в 12 томах = Українська радянська енциклопедія (укр.) / За ред. М. Бажана . - 2-ге вид. - К. : Гол. редакція УРЕ, 1974-1985.
  • Малая горная энциклопедия . В 3-х т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  • Белоконь Н. И. Термодинамика. - М .: Госэнергоиздат, 1954. - 417 с.
  • Белоконь Н. И. Основные принципы термодинамики. - М .: Недра, 1968. - 112 с.
  • Кириллин В.А. Техническая термодинамика. - М .: Энергоатомиздат, 1983. - 414 с.
  • Вукалович М. П., Новиков И. И. Техническая термодинамика. - М .: Энергия, 1968. - 497 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. - М .: ФИЗМАТЛИТ, 2005. - 544 с. - ISBN 5-9221-0601-5 .
  • Базаров И. П. Термодинамика. - М .: Высшая школа, 1991. - 376 с. - ISBN 5-06-000626-3 .
  • Різак В.,Різак І., Рудавський Е. Кріогенна фізика і техніка. - К. : Наукова думка, 2006. - 512 с. - ISBN 966-00-480-X.

Отрывок, характеризующий Термодинамическая температура

Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.
У Анны Павловны 26 го августа, в самый день Бородинского сражения, был вечер, цветком которого должно было быть чтение письма преосвященного, написанного при посылке государю образа преподобного угодника Сергия. Письмо это почиталось образцом патриотического духовного красноречия. Прочесть его должен был сам князь Василий, славившийся своим искусством чтения. (Он же читывал и у императрицы.) Искусство чтения считалось в том, чтобы громко, певуче, между отчаянным завыванием и нежным ропотом переливать слова, совершенно независимо от их значения, так что совершенно случайно на одно слово попадало завывание, на другие – ропот. Чтение это, как и все вечера Анны Павловны, имело политическое значение. На этом вечере должно было быть несколько важных лиц, которых надо было устыдить за их поездки во французский театр и воодушевить к патриотическому настроению. Уже довольно много собралось народа, но Анна Павловна еще не видела в гостиной всех тех, кого нужно было, и потому, не приступая еще к чтению, заводила общие разговоры.
Новостью дня в этот день в Петербурге была болезнь графини Безуховой. Графиня несколько дней тому назад неожиданно заболела, пропустила несколько собраний, которых она была украшением, и слышно было, что она никого не принимает и что вместо знаменитых петербургских докторов, обыкновенно лечивших ее, она вверилась какому то итальянскому доктору, лечившему ее каким то новым и необыкновенным способом.
Все очень хорошо знали, что болезнь прелестной графини происходила от неудобства выходить замуж сразу за двух мужей и что лечение итальянца состояло в устранении этого неудобства; но в присутствии Анны Павловны не только никто не смел думать об этом, но как будто никто и не знал этого.
– On dit que la pauvre comtesse est tres mal. Le medecin dit que c"est l"angine pectorale. [Говорят, что бедная графиня очень плоха. Доктор сказал, что это грудная болезнь.]
– L"angine? Oh, c"est une maladie terrible! [Грудная болезнь? О, это ужасная болезнь!]
– On dit que les rivaux se sont reconcilies grace a l"angine… [Говорят, что соперники примирились благодаря этой болезни.]
Слово angine повторялось с большим удовольствием.
– Le vieux comte est touchant a ce qu"on dit. Il a pleure comme un enfant quand le medecin lui a dit que le cas etait dangereux. [Старый граф очень трогателен, говорят. Он заплакал, как дитя, когда доктор сказал, что случай опасный.]
– Oh, ce serait une perte terrible. C"est une femme ravissante. [О, это была бы большая потеря. Такая прелестная женщина.]
– Vous parlez de la pauvre comtesse, – сказала, подходя, Анна Павловна. – J"ai envoye savoir de ses nouvelles. On m"a dit qu"elle allait un peu mieux. Oh, sans doute, c"est la plus charmante femme du monde, – сказала Анна Павловна с улыбкой над своей восторженностью. – Nous appartenons a des camps differents, mais cela ne m"empeche pas de l"estimer, comme elle le merite. Elle est bien malheureuse, [Вы говорите про бедную графиню… Я посылала узнавать о ее здоровье. Мне сказали, что ей немного лучше. О, без сомнения, это прелестнейшая женщина в мире. Мы принадлежим к различным лагерям, но это не мешает мне уважать ее по ее заслугам. Она так несчастна.] – прибавила Анна Павловна.
Полагая, что этими словами Анна Павловна слегка приподнимала завесу тайны над болезнью графини, один неосторожный молодой человек позволил себе выразить удивление в том, что не призваны известные врачи, а лечит графиню шарлатан, который может дать опасные средства.
– Vos informations peuvent etre meilleures que les miennes, – вдруг ядовито напустилась Анна Павловна на неопытного молодого человека. – Mais je sais de bonne source que ce medecin est un homme tres savant et tres habile. C"est le medecin intime de la Reine d"Espagne. [Ваши известия могут быть вернее моих… но я из хороших источников знаю, что этот доктор очень ученый и искусный человек. Это лейб медик королевы испанской.] – И таким образом уничтожив молодого человека, Анна Павловна обратилась к Билибину, который в другом кружке, подобрав кожу и, видимо, сбираясь распустить ее, чтобы сказать un mot, говорил об австрийцах.

Температура Т была введена вначале эмпирическим путем с помощью газового термометра исходя из зависимости между давлением и температурой идеального газа. Но уравнение для идеального газа справедливо в ограниченном интервале значений давлений и температур.

Из выражения для КПД машины, работающей по циклу Карно, следует, что

Вообще говоря, это соотношение позволяет опытным путём ввести новую абсолютную шкалу температур, которая не зависит от свойств рабочего тела и такую, что КПД для цикла Карно будет зависеть только от новых температур, и будет выполняться равенство

Ф (Т Х, Т Н ).

Рассмотрим цикл Карно 1-2-5-6-1 с температурами нагревателя Т 1 и холодильника Т 3 , состоящий из двух «подциклов» 1-2-3-4-1 и 4-3-5-6-4 с промежуточной температурой Т 2 . Цикл 1-2-5-6-1 можно интерпретировать как термодинамический цикл объединённой тепловой машины, состоящей из двух тепловых машин, работающих по круговым процессам 1-2-3-4-1 и 4-3-5-6-4.

Для всех трех циклов можно записать

, Q¢ 3 /Q¢ 2 = Ф (Т 3 ,Т 2 ), .

Следует заметить, что в круговом процессе 1-2-3-4-1 теплота Q¢ 2 , отводимая холодильником первой тепловой машины, равна теплоте, подводимой к рабочему телу второй машины, которой соответствует круговой процесс 4-3-5-6-4, т.е. холодильник первой машины выступает в качестве нагревателя второй. А суммарная работа двух тепловых машин равна работе объединённой тепловой машины, которой соответствует круговой процесс 1-2-5-6-1.

Так как Q¢ 3 /Q 1 = (Q¢ 3 /Q¢ 2) × (Q¢ 2 /Q 1) , то при этом должно выполняться равенство

Но левая часть не зависит от Т 2 . Это возможно в случае, когда , и .

Величина представляет собой термодинамическую температуру и при сопоставлении её с идеально-газовой шкалой может быть записана в виде = Т, где Т – температура, заданная шкалой Кельвина. Следовательно, шкала температур, построенная с использованием идеально-газового термометра, и термодинамическая шкала температур совпадают.

Таким образом, цикл Карно позволяет построить термодинамическую шкалу температур и предложить термодинамический термометр . Принцип действия такого термометра заключается в организации цикла Карно между телом с неизвестной температурой Т X и телом с известной температурой Т (например, с тающим льдом или кипящей водой) и измерении соответствующего количества теплоты Q X и Q. Применение формулы

1. В 1848 г. Вильям Томсон (лорд Кельвин) указал, что теоремой Карно можно воспользоваться для построения рациональной температурной шкалы, не зависящей от индивидуальных особенностей термометрического вещества и устройства термометра.

Из теоремы Карно следует, что к. п. д. цикла Карно может зависеть только от температур нагревателя и холодильника. Обозначим буквами t 1 и t 2 эмпирические температуры нагревателя и холодильника, измеренные каким-либо термометром Тогда

Q1 − Q2

F (t 1, t 2 )

где f (t1 , t2 ) - универсальная функция выбранных эмпирических температур t1 и t2 . Ее вид не зависит от устройства машины Карно и от рода используемого рабочего вещества.

Чтобы построить термодинамическую шкалу температур, введем более простую универсальную функцию

=ϕ(t 1, t 2 )

очевидно, что эти фунцкции связаны

f (t1, t2 )=

Q1 − Q2

−1 =ϕ(t 1, t 2 )−1

Определим вид этой функции ϕ(t 1, t 2 )

Для этого рассмотрим 3 цикла Карно. Т.е. имеется 3 тепловых резервуара, поддерживаемых при постоянных температурах

Д ля циклов Карно 1234 и 4356 можно написать

Q 1 =ϕ(t 1, t 2 )

Q 2 =ϕ(t 2, t 3 )

Исключив отсюда тепло Q2, получим

Q 1 =ϕ(t 1, t 2 )ϕ(t 2, t 3 )

С другой стороны для цикла 1256

Q 1 =ϕ(t 1, t 3 )

ϕ(t 1, t 3 )=ϕ(t 1, t 2 )ϕ(t 2, t 3)

ϕ(t 1, t 2 )=

ϕ(t 1, t 3)

ϕ(t 2, t 3)

Это соотношение не должно зависеть от t3 . т. к. в этот цикл не входит 3-й резервуар, температура, которого может быть произвольной. Следовательно функция должна иметь вид:

ϕ(t 1, t k )=Θ(t 1 )Θ(t k )

Θ(t 1 )

Θ(t 2 )

Так как величина

Θ(t ) зависит только от температуры, то она сама может быть

принята за меру температуры тела.

Величину Θ и называют абсолютной термодинамической температурой.

своего знака, т.е. абсолютная термодинамическая температура не может принимать отрицательных значений.

Предположим, что существует тело, абсолютная температура которого отрицательна. Используем его в качестве холодильника в тепловой машине Карно. В качестве нагревателя возьмем другое тело, абсолютная температура которого положительна. В этом случае получим противоречие со вторым законом термодинамики. (без доказательства)

Самая низкая температура, допускаемая постулатом второго начала термодинамики, есть 0. Эта температура называется абсолютным нулем температур.

Второе начало термодинамики не может ответить на вопрос, достижим или не достижим абсолютный нуль температур. Оно позволяет лишь утверждать, что

охладить тело ниже абсолютного нуля невозможно.

Достижимость абсолютного нуля решается в рамках 3-его закона термодинамики.

2.4.Тождественность термодинамической шкалы температур со шкалой идеально-газового термометра

о существим цикл Карно, взяв в качестве рабочего тела идеальный газ. Для простоты будем предполагать, что количество газа равно одному молю.

1-2 Изотермический процесс

По первому началу δ Q = dU + PdV . Так как U=U(T), dU=0

δ Q = PdV , PV=RT

Интегрируя это выражение, находим

Q1 = RT 1 ln (V 1 / V 2 )

Аналогично

3-4 Изотермический процесс

Q2 = RT 2 ln (V 3 / V 4 )

T 1 ln (V 1 / V 2 )

ln (V 3 / V 4 )

(2-3) (4-1) адиабатический процесс

TV γ − 1 = const

T 1 V γ 2− 1 = T 2 V γ 3− 1

T 1 V γ 1− 1 = T 2 V γ 4− 1

Молекулярная физика

поделим одно на другое

Это соотношение справедливо и для таких идеальных газов, у которых величина γ зависит от температуры.

Из этого соотношения следует, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеально-газового термометра, если в обоих случаях температуре основной реперной точки одно и то же значение.

Например, температуре таяния льда припишем 273.16K.

Используя формулу (1) можно получит выражение для КПД машины Карно, у которой в качестве рабочего вещества используется идеальный газ

Q1 − Q2

T 1 − T 2

2.5. Преобразование теплоты в механическую работу при изотермическом процессе. Вторая теорема Карно

Теплота - энергия, передаваемая от тела с более высокой температурой телу с меньшей температурой, например, при их контакте. Сама по себе такая передача энергии не сопровождается совершением работы, потому что при этом нет перемещения каких-либо тел. Она приводит лишь к увеличению внутренней энергии тела, которому теплота передается, и к выравниванию температур, после чего прекращается и сам процесс теплопередачи. Но если тепло передается телу, которое при этом может расширяться, то оно может совершить работу.

Согласно закону сохранения энергии

δQ =dU +δ A

Наибольшая "работа совершается при изотермическом процессе, когда внутренняя энергия не изменяется, так что

δQ =δ A

Большей работа, конечно, не может быть.

Следовательно, для получения максимальной работы, равной подведенной теплоте, нужно передавать теплоту расширяющемуся телу так, чтобы между ним и источником теплоты не было разности температур.

Правда, если между источником теплоты и телом, которому она передается, нет разности температур, то теплота и передаваться не будет!

На практике, чтобы теплота передавалась, достаточно и бесконечно малой разности температур, что почти не отличается от полной изотермичности. Процесс передачи теплоты идет при таких условиях бесконечно медленно и поэтому обратим. Т.о. цикл

Карно - это идеализированный цикл, при котором производится за цикл бесконечномалая работа и его можно считать обратимым, т. к. диссипативными процессами пренебрегаем.

Реальный процесс - диссипативный, т. к. часть тепла идет на увеличение внутренней энергии и работа в этом случае

δ A н =δQ −dU ≤δQ =δ A р

Т.о. необратимый процесс приводит к увеличению внутренней энергии тела в ущерб работе.

δ A н ≤δ A р

Отсюда следует вторая теорема Карно: Коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

η= Q1 − Q2 ≤ T 1 − T 2 (1)

Но если рассматривать наш процесс стойки зрения изменений, происходящих в самом рабочем теле, то Q1 и Q2 - это количество теплоты, полученное и соответственно отданное рабочим телом. Этим величинам Q1 и Q2 нужно, очевидно, приписать противоположные знаки. Будем считать полученное телом количество теплоты Q1 положительным; тогда Q2 отрицательно.

Следовательно, неравенство (1) перепишется в виде:

Q1 + Q2

T 1 − T 2

В случае обратимых процессов

Молекулярная физика

Q1 + Q2 = T 1 − T 2

1 +Q 2 =1 − T 2

А в случае необратимого (неравновесного) процесса

Эти соотношения можно обобщить следующим образом:

≤0

2 δ Q

1 δ Q

∫ 1 T 1

+ ∫ 2 T 2

≤0

δ T Q ≤ 0

Это соотношение называется неравенством Клаузиуса.