Уравнения специального вида. Неоднородные дифференциальные уравнения второго порядка

На лекции изучаются ЛНДУ – линейные неоднородные дифференциальные уравнения. Рассматривается структура общего решения, решение ЛНДУ методом вариации произвольных постоянных, решение ЛНДУ с постоянными коэффициентами и правой частью специального вида. Рассматриваемые вопросы применяются при изучении вынужденных колебаний в физике, электротехнике и электронике, теории автоматического управления.

1. Структура общего решения линейного неоднородного дифференциального уравнения 2 порядка.

Рассмотрим сначала линейное неоднородное уравнение произвольного порядка:

С учетом обозначения можно записать:

При этом будем полагать, что коэффициенты и правая часть этого уравнения непрерывны на некотором интервале.

Теорема. Общее решение линейного неоднородного дифференциального уравнения в некоторой области есть сумма любого его решения и общего решения соответствующего линейного однородного дифференциального уравнения.

Доказательство. Пусть Y – некоторое решение неоднородного уравнения.

Тогда при подстановке этого решения в исходное уравнение получаем тождество:

Пусть
- фундаментальная система решений линейного однородного уравнения
. Тогда общее решение однородного уравнения можно записать в виде:

В частности, для линейного неоднородного дифференциального уравнения 2 порядка структура общего решения имеет вид:

где
- фундаментальная система решений соответствующего однородного уравнения, а
- какое-либо частное решение неоднородного уравнения.

Таким образом, для решения линейного неоднородного дифференциального уравнения необходимо найти общее решение соответствующего однородного уравнения и каким- то образом отыскать одно частное решение неоднородного уравнения. Обычно оно находится подбором. Способы подбора частного решения рассмотрим в следующих вопросах.

2. Метод вариации

На практике удобно применять метод вариации произвольных постоянных.

Для этого сначала находят общее решение соответствующего однородного уравнения в виде:

Затем, полагая коэффициенты C i функциями от х , ищется решение неоднородного уравнения:

Можно доказать, что для нахождения функций C i (x ) надо решить систему уравнений:

Пример. Решить уравнение

Решаем линейное однородное уравнение

Решение неоднородного уравнения будет иметь вид:

Составляем систему уравнений:

Решим эту систему:

Из соотношения найдем функциюА(х).

Теперь находим В(х).

Подставляем полученные значения в формулу общего решения неоднородного уравнения:

Окончательный ответ:

Вообще говоря, метод вариации произвольных постоянных пригоден для нахождения решений любого линейного неоднородного уравнения. Но т.к. нахождение фундаментальной системы решений соответствующего однородного уравнения может быть достаточно сложной задачей, этот метод в основном применяется для неоднородных уравнений с постоянными коэффициентами.

3. Уравнения с правой частью специального вида

Представляется возможным представить вид частного решения в зависимости от вида правой части неоднородного уравнения.

Различают следующие случаи:

I. Правая часть линейного неоднородного дифференциального уравнения имеет вид:

где - многочлен степениm .

Тогда частное решение ищется в виде:

Здесь Q (x ) - многочлен той же степени, что и P (x ) , но с неопределенными коэффициентами, а r – число, показывающее сколько раз число  является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.

Пример. Решить уравнение
.

Решим соответствующее однородное уравнение:

Теперь найдем частное решение исходного неоднородного уравнения.

Сопоставим правую часть уравнения с видом правой части, рассмотренным выше.

Частное решение ищем в виде:
, где

Т.е.

Теперь определим неизвестные коэффициенты А и В .

Подставим частное решение в общем виде в исходное неоднородное дифференциальное уравнение.

Итого, частное решение:

Тогда общее решение линейного неоднородного дифференциального уравнения:

II. Правая часть линейного неоднородного дифференциального уравнения имеет вид:

Здесь Р 1 (х) и Р 2 (х) – многочлены степени m 1 и m 2 соответственно.

Тогда частное решение неоднородного уравнения будет иметь вид:

где число r показывает сколько раз число
является корнем характеристического уравнения для соответствующего однородного уравнения, аQ 1 (x ) и Q 2 (x ) – многочлены степени не выше m , где m - большая из степеней m 1 и m 2 .

Сводная таблица видов частных решений

для различных видов правых частей

Правая часть дифф.уравнения

характеристиче­ского уравнения

Виды частного

1. Число не явля­ется корнем ха­рактеристиче­ского уравнения

2. Число – корень характеристиче­ского уравнения кратности

1. Число
не яв­ляется корнем характеристиче­ского уравнения

2. Число
явля­ется корнем ха­рактеристиче­ского уравнения кратности

1. Числа

2. Числа
яв­ляются корнями характеристиче­ского уравнения кратности

1. Числа
не являются кор­нями характери­стического урав­нения кратности

2. Числа
являются кор­нями характери­стического урав­нения кратности

Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.

Т.е. если уравнение имеет вид:
, то частное решение этого уравнения будет
гдеу 1 и у 2 – частные решения вспомогательных уравнений

и

Для иллюстрации решим рассмотренный выше пример другим способом.

Пример. Решить уравнение

Правую часть дифференциального уравнения представим в виде суммы двух функций f 1 (x ) + f 2 (x ) = x + (- sinx ).

Составим и решим характеристическое уравнение:


Получаем: Т.е.

Итого:

Т.е. искомое частное решение имеет вид:

Общее решение неоднородного дифференциального уравнения:

Рассмотрим примеры применения описанных методов.

Пример 1.. Решить уравнение

Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения:


Теперь найдем частное решение неоднородного уравнения в виде:

Воспользуемся методом неопределенных коэффициентов.

Подставляя в исходное уравнение, получаем:

Частное решение имеет вид:

Общее решение линейного неоднородного уравнения:

Пример. Решить уравнение

Характеристическое уравнение:

Общее решение однородного уравнения:

Частное решение неоднородного уравнения:
.

Находим производные и подставляем их в исходное неоднородное уравнение:

Получаем общее решение неоднородного дифференциального уравнения:

Данная статья раскрывает вопрос о решении линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Будет рассмотрена теория вместе с примерами приведенных задач. Для расшифровки непонятных терминов необходимо обращаться к теме об основных определениях и понятиях теории дифференциальных уравнений.

Рассмотрим линейное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами вида y "" + p · y " + q · y = f (x) , где произвольными числами являются p и q , а имеющаяся функция f (х) непрерывная на интервале интегрирования x .

Перейдем к формулировке теоремы общего решения ЛНДУ.

Yandex.RTB R-A-339285-1

Теорема общего решения ЛДНУ

Теорема 1

Общим решением, находящимся на интервале х, неоднородного дифференциального уравнения вида y (n) + f n - 1 (x) · y (n - 1) + . . . + f 0 (x) · y = f (x) с непрерывными коэффициентами интегрирования на x интервале f 0 (x) , f 1 (x) , . . . , f n - 1 (x) и непрерывной функцией f (x) равняется сумме общего решения y 0 , которое соответствует ЛОДУ и каким-нибудь частным решением y ~ , где исходным неоднородным уравнением является y = y 0 + y ~ .

Отсюда видно, что решение такого уравнения второго порядка имеет вид y = y 0 + y ~ . Алгоритм нахождения y 0 рассмотрен в статье о линейных однородных дифференциальных уравнениях второго порядка с постоянными коэффициентами. После чего следует переходить к определению y ~ .

Выбор частного решения ЛНДУ зависит от вида имеющейся функции f (x) , располагающейся в правой части уравнения. Для этого необходимо рассмотреть отдельно решения линейных неоднородных дифференциальных уравнений второго порядка при постоянных коэффициентах.

Когда f (x) считается за многочлен n -ой степени f (x) = P n (x) , отсюда следует, что частное решение ЛНДУ находим по формуле вида y ~ = Q n (x) · x γ , где Q n (x) является многочленом степени n , r – это количество нулевых корней характеристического уравнения. Значение y ~ является частным решением y ~ "" + p · y ~ " + q · y ~ = f (x) , тогда имеющиеся коэффициенты, которые определены многочленом
Q n (x) , отыскиваем при помощи метода неопределенных коэффициентов из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 1

Вычислить по теореме Коши y "" - 2 y " = x 2 + 1 , y (0) = 2 , y " (0) = 1 4 .

Решение

Иначе говоря, необходимо перейти к частному решению линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами y "" - 2 y " = x 2 + 1 , которое будет удовлетворять заданным условиям y (0) = 2 , y " (0) = 1 4 .

Общим решением линейного неоднородного уравнения является сумма общего решения, которое соответствует уравнению y 0 или частному решению неоднородного уравнения y ~ , то есть y = y 0 + y ~ .

Для начала найдем общее решение для ЛНДУ, а после чего – частное.

Перейдем к нахождению y 0 . Запись характеристического уравнения поможет найти корни. Получаем, что

k 2 - 2 k = 0 k (k - 2) = 0 k 1 = 0 , k 2 = 2

Получили, что корни различные и действительные. Поэтому запишем

y 0 = C 1 e 0 x + C 2 e 2 x = C 1 + C 2 e 2 x .

Найдем y ~ . Видно, что правая часть заданного уравнения является многочленом второй степени, тогда один из корней равняется нулю. Отсюда получим, что частным решением для y ~ будет

y ~ = Q 2 (x) · x γ = (A x 2 + B x + C) · x = A x 3 + B x 2 + C x , где значения А, В, С принимают неопределенные коэффициенты.

Найдем их из равенства вида y ~ "" - 2 y ~ " = x 2 + 1 .

Тогда получим, что:

y ~ "" - 2 y ~ " = x 2 + 1 (A x 3 + B x 2 + C x) "" - 2 (A x 3 + B x 2 + C x) " = x 2 + 1 3 A x 2 + 2 B x + C " - 6 A x 2 - 4 B x - 2 C = x 2 + 1 6 A x + 2 B - 6 A x 2 - 4 B x - 2 C = x 2 + 1 - 6 A x 2 + x (6 A - 4 B) + 2 B - 2 C = x 2 + 1

Приравняв коэффициенты с одинаковыми показателями степеней x , получим систему линейных выражений - 6 A = 1 6 A - 4 B = 0 2 B - 2 C = 1 . При решении любым из способов найдем коэффициенты и запишем: A = - 1 6 , B = - 1 4 , C = - 3 4 и y ~ = A x 3 + B x 2 + C x = - 1 6 x 3 - 1 4 x 2 - 3 4 x .

Эта запись называется общим решением исходного линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.

Для нахождения частного решения, которое удовлетворяет условиям y (0) = 2 , y " (0) = 1 4 , требуется определить значения C 1 и C 2 , исходя из равенства вида y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Получаем, что:

y (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x x = 0 = C 1 + C 2 y " (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x " x = 0 = = 2 C 2 e 2 x - 1 2 x 2 + 1 2 x + 3 4 x = 0 = 2 C 2 - 3 4

Работаем с полученной системой уравнений вида C 1 + C 2 = 2 2 C 2 - 3 4 = 1 4 , где C 1 = 3 2 , C 2 = 1 2 .

Применив теорему Коши, имеем, что

y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x = = 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x

Ответ: 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Когда функция f (x) представляется в виде произведения многочлена со степенью n и экспоненты f (x) = P n (x) · e a x , тогда отсюда получаем, что частным решением ЛНДУ второго порядка будет уравнение вида y ~ = e a x · Q n (x) · x γ , где Q n (x) является многочленом n -ой степени, а r – количеством корней характеристического уравнения, равняющиеся α .

Коэффициенты, принадлежащие Q n (x) находятся по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 2

Найти общее решение дифференциального уравнения вида y "" - 2 y " = (x 2 + 1) · e x .

Решение

Уравнение общего вида y = y 0 + y ~ . Указанное уравнение соответствует ЛОДУ y "" - 2 y " = 0 . По предыдущему примеру видно, что его корни равняются k 1 = 0 и k 2 = 2 и y 0 = C 1 + C 2 e 2 x по характеристическому уравнению.

Видно, что правой частью уравнения является x 2 + 1 · e x . Отсюда ЛНДУ находится через y ~ = e a x · Q n (x) · x γ , где Q n (x) , являющимся многочленом второй степени, где α = 1 и r = 0 , потому как у характеристического уравнения отсутствует корень, равный 1 . Отсюда получаем, что

y ~ = e a x · Q n (x) · x γ = e x · A x 2 + B x + C · x 0 = e x · A x 2 + B x + C .

А, В, С являются неизвестными коэффициентами, которые можно найти по равенству y ~ "" - 2 y ~ " = (x 2 + 1) · e x .

Получили, что

y ~ " = e x · A x 2 + B x + C " = e x · A x 2 + B x + C + e x · 2 A x + B = = e x · A x 2 + x 2 A + B + B + C y ~ " " = e x · A x 2 + x 2 A + B + B + C " = = e x · A x 2 + x 2 A + B + B + C + e x · 2 A x + 2 A + B = = e x · A x 2 + x 4 A + B + 2 A + 2 B + C

y ~ "" - 2 y ~ " = (x 2 + 1) · e x ⇔ e x · A x 2 + x 4 A + B + 2 A + 2 B + C - - 2 e x · A x 2 + x 2 A + B + B + C = x 2 + 1 · e x ⇔ e x · - A x 2 - B x + 2 A - C = (x 2 + 1) · e x ⇔ - A x 2 - B x + 2 A - C = x 2 + 1 ⇔ - A x 2 - B x + 2 A - C = 1 · x 2 + 0 · x + 1

Показатели при одинаковых коэффициентах приравниваем и получаем систему линейных уравнений. Отсюда и находим А, В, С:

A = 1 - B = 0 2 A - C = 1 ⇔ A = - 1 B = 0 C = - 3

Ответ: видно, что y ~ = e x · (A x 2 + B x + C) = e x · - x 2 + 0 · x - 3 = - e x · x 2 + 3 является частным решением ЛНДУ, а y = y 0 + y = C 1 e 2 x - e x · x 2 + 3 - общим решением для неоднородного дифуравнения второго порядка.

Когда функция записывается как f (x) = A 1 cos (β x) + B 1 sin β x , а А 1 и В 1 являются числами, тогда частным решением ЛНДУ считается уравнение вида y ~ = A cos β x + B sin β x · x γ , где А и В считаются неопределенными коэффициентами, а r числом комплексно сопряженных корней, относящихся к характеристическому уравнению, равняющимся ± i β . В этом случае поиск коэффициентов проводится по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 3

Найти общее решение дифференциального уравнения вида y "" + 4 y = cos (2 x) + 3 sin (2 x) .

Решение

Перед написанием характеристического уравнения находим y 0 . Тогда

k 2 + 4 = 0 k 2 = - 4 k 1 = 2 i , k 2 = - 2 i

Имеем пару комплексно сопряженных корней. Преобразуем и получим:

y 0 = e 0 · (C 1 cos (2 x) + C 2 sin (2 x)) = C 1 cos 2 x + C 2 sin (2 x)

Корни из характеристического уравнения считаются сопряженной парой ± 2 i , тогда f (x) = cos (2 x) + 3 sin (2 x) . Отсюда видно, что поиск y ~ будет производиться из y ~ = (A cos (β x) + B sin (β x) · x γ = (A cos (2 x) + B sin (2 x)) · x . Неизвестные коэффициенты А и В будем искать из равенства вида y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) .

Преобразуем:

y ~ " = ((A cos (2 x) + B sin (2 x) · x) " = = (- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x) y ~ "" = ((- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x)) " = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 2 A sin (2 x) + 2 B cos (2 x) - - 2 A sin (2 x) + 2 B cos (2 x) = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x)

Тогда видно, что

y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) ⇔ (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x) + + 4 (A cos (2 x) + B sin (2 x)) · x = cos (2 x) + 3 sin (2 x) ⇔ - 4 A sin (2 x) + 4 B cos (2 x) = cos (2 x) + 3 sin (2 x)

Необходимо приравнять коэффициенты синусов и косинусов. Получаем систему вида:

4 A = 3 4 B = 1 ⇔ A = - 3 4 B = 1 4

Следует, что y ~ = (A cos (2 x) + B sin (2 x) · x = - 3 4 cos (2 x) + 1 4 sin (2 x) · x .

Ответ: общим решением исходного ЛНДУ второго порядка с постоянными коэффициентами считается

y = y 0 + y ~ = = C 1 cos (2 x) + C 2 sin (2 x) + - 3 4 cos (2 x) + 1 4 sin (2 x) · x

Когда f (x) = e a x · P n (x) sin (β x) + Q k (x) cos (β x) , тогда y ~ = e a x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ . Имеем, что r – это число комплексно сопряженных пар корней, относящихся к характеристическому уравнению, равняются α ± i β , где P n (x) , Q k (x) , L m (x) и N m (x) являются многочленами степени n , k , т, m , где m = m a x (n , k) . Нахождение коэффициентов L m (x) и N m (x) производится, исходя из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 4

Найти общее решение y "" + 3 y " + 2 y = - e 3 x · ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) .

Решение

По условию видно, что

α = 3 , β = 5 , P n (x) = - 38 x - 45 , Q k (x) = - 8 x + 5 , n = 1 , k = 1

Тогда m = m a x (n , k) = 1 . Производим нахождение y 0 , предварительно записав характеристическое уравнение вида:

k 2 - 3 k + 2 = 0 D = 3 2 - 4 · 1 · 2 = 1 k 1 = 3 - 1 2 = 1 , k 2 = 3 + 1 2 = 2

Получили, что корни являются действительными и различными. Отсюда y 0 = C 1 e x + C 2 e 2 x . Далее необходимо искать общее решение, исходя из неоднородного уравнения y ~ вида

y ~ = e α x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) · x 0 = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x))

Известно, что А, В, С являются коэффициентами, r = 0 , потому как отсутствует пара сопряженных корней, относящихся к характеристическому уравнению с α ± i β = 3 ± 5 · i . Данные коэффициенты находим из полученного равенства:

y ~ "" - 3 y ~ " + 2 y ~ = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) ⇔ (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) "" - - 3 (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x))

Нахождение производной и подобных слагаемых дает

E 3 x · ((15 A + 23 C) · x · sin (5 x) + + (10 A + 15 B - 3 C + 23 D) · sin (5 x) + + (23 A - 15 C) · x · cos (5 x) + (- 3 A + 23 B - 10 C - 15 D) · cos (5 x)) = = - e 3 x · (38 · x · sin (5 x) + 45 · sin (5 x) + + 8 · x · cos (5 x) - 5 · cos (5 x))

После приравнивания коэффициентов получаем систему вида

15 A + 23 C = 38 10 A + 15 B - 3 C + 23 D = 45 23 A - 15 C = 8 - 3 A + 23 B - 10 C - 15 D = - 5 ⇔ A = 1 B = 1 C = 1 D = 1

Из всего следует, что

y ~ = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) = = e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Ответ: теперь получено общее решение заданного линейного уравнения:

y = y 0 + y ~ = = C 1 e x + C 2 e 2 x + e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Алгоритм решения ЛДНУ

Определение 1

Любой другой вид функции f (x) для решения предусматривает соблюдение алгоритма решения:

  • нахождение общего решения соответствующего линейного однородного уравнения, где y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 являются линейно независимыми частными решениями ЛОДУ, С 1 и С 2 считаются произвольными постоянными;
  • принятие в качестве общего решения ЛНДУ y = C 1 (x) ⋅ y 1 + C 2 (x) ⋅ y 2 ;
  • определение производных функции через систему вида C 1 " (x) + y 1 (x) + C 2 " (x) · y 2 (x) = 0 C 1 " (x) + y 1 " (x) + C 2 " (x) · y 2 " (x) = f (x) , а нахождение функций C 1 (x) и C 2 (x) посредствам интегрирования.

Пример 5

Найти общее решение для y "" + 36 y = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x .

Решение

Переходим к написанию характеристического уравнения, предварительно записав y 0 , y "" + 36 y = 0 . Запишем и решим:

k 2 + 36 = 0 k 1 = 6 i , k 2 = - 6 i ⇒ y 0 = C 1 cos (6 x) + C 2 sin (6 x) ⇒ y 1 (x) = cos (6 x) , y 2 (x) = sin (6 x)

Имеем, что запись общего решения заданного уравнения получит вид y = C 1 (x) · cos (6 x) + C 2 (x) · sin (6 x) . Необходимо перейти к определению производных функций C 1 (x) и C 2 (x) по системе с уравнениями:

C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) · (cos (6 x)) " + C 2 " (x) · (sin (6 x)) " = 0 ⇔ C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) (- 6 sin (6 x) + C 2 " (x) (6 cos (6 x)) = = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x

Необходимо произвести решение относительно C 1 " (x) и C 2 " (x) при помощи любого способа. Тогда запишем:

C 1 " (x) = - 4 sin 2 (6 x) + 2 sin (6 x) cos (6 x) - 6 e 6 x sin (6 x) C 2 " (x) = 4 sin (6 x) cos (6 x) - 2 cos 2 (6 x) + 6 e 6 x cos (6 x)

Каждое из уравнений следует проинтегрировать. Тогда запишем получившиеся уравнения:

C 1 (x) = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 C 2 (x) = - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4

Отсюда следует, что общее решение будет иметь вид:

y = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 · cos (6 x) + + - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4 · sin (6 x) = = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Ответ: y = y 0 + y ~ = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Основы решения линейных неоднородных дифференциальных уравнений второго порядка (ЛНДУ-2) с постоянными коэффициентами (ПК)

ЛНДУ 2-го порядка с постоянными коэффициентами $p$ и $q$ имеет вид $y""+p\cdot y"+q\cdot y=f\left(x\right)$, где $f\left(x\right)$ - непрерывная функция.

В отношении ЛНДУ 2-го с ПК справедливы два следующих утверждения.

Предположим, что некоторая функция $U$ является произвольным частным решением неоднородного дифференциального уравнения. Предположим также, что некоторая функция $Y$ является общим решением (ОР) соответствующего линейного однородного дифференциального уравнения (ЛОДУ) $y""+p\cdot y"+q\cdot y=0$. Тогда ОР ЛНДУ-2 равно сумме указанных частного и общего решений, то есть $y=U+Y$.

Если правая часть ЛНДУ 2-го порядка представляет собой сумму функций, то есть $f\left(x\right)=f_{1} \left(x\right)+f_{2} \left(x\right)+...+f_{r} \left(x\right)$, то сначала можно найти ЧР $U_{1} ,U_{2} ,...,U_{r} $, которые соответствуют каждой из функций $f_{1} \left(x\right),f_{2} \left(x\right),...,f_{r} \left(x\right)$, а уже после этого записать ЧР ЛНДУ-2 в виде $U=U_{1} +U_{2} +...+U_{r} $.

Решение ЛНДУ 2-го порядка с ПК

Очевидно, что вид того или иного ЧР $U$ данного ЛНДУ-2 зависит от конкретного вида его правой части $f\left(x\right)$. Простейшие случаи поиска ЧР ЛНДУ-2 сформулированы в виде четырех следующих правил.

Правило № 1.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=P_{n} \left(x\right)$, где $P_{n} \left(x\right)=a_{0} \cdot x^{n} +a_{1} \cdot x^{n-1} +...+a_{n-1} \cdot x+a_{n} $, то есть называется многочленом степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных нулю. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом неопределенных коэффициентов (НК).

Правило № 2.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot P_{n} \left(x\right)$, где $P_{n} \left(x\right)$ представляет собой многочлен степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} \cdot e^{\alpha \cdot x} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha $. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом НК.

Правило № 3.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=a\cdot \cos \left(\beta \cdot x\right)+b\cdot \sin \left(\beta \cdot x\right)$, где $a$, $b$ и $\beta $ - известные числа. Тогда его ЧР $U$ ищут в виде $U=\left(A\cdot \cos \left(\beta \cdot x\right)+B\cdot \sin \left(\beta \cdot x\right)\right)\cdot x^{r} $, где $A$ и $B$ - неизвестные коэффициенты, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $i\cdot \beta $. Коэффициенты $A$ и $B$ находят методом НК.

Правило № 4.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot \left$, где $P_{n} \left(x\right)$ - многочлен степени $n$, а $P_{m} \left(x\right)$ - многочлен степени $m$. Тогда его ЧР $U$ ищут в виде $U=e^{\alpha \cdot x} \cdot \left\cdot x^{r} $, где $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ - многочлены степени $s$, число $s$ - максимальное из двух чисел $n$ и $m$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha +i\cdot \beta $. Коэффициенты многочленов $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ находят методом НК.

Метод НК состоит в применении следующего правила. Для того чтобы найти неизвестные коэффициенты многочлена, которые входят в состав частного решения неоднородного дифференциального уравнения ЛНДУ-2, необходимо:

  • подставить ЧР $U$, записанное в общем виде, в левую часть ЛНДУ-2;
  • в левой части ЛНДУ-2 выполнить упрощения и сгруппировать члены с одинаковыми степенями $x$;
  • в полученном тождестве приравнять коэффициенты при членах с одинаковыми степенями $x$ левой и правой частей;
  • решить полученную систему линейных уравнений относительно неизвестных коэффициентов.

Пример 1

Задача: найти ОР ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. Найти также ЧР, удовлетворяющее начальным условиям $y=6$ при $x=0$ и $y"=1$ при $x=0$.

Записываем соответствующее ЛОДУ-2: $y""-3\cdot y"-18\cdot y=0$.

Характеристическое уравнение: $k^{2} -3\cdot k-18=0$. Корни характеристического уравнения: $k_{1} =-3$, $k_{2} =6$. Эти корни действительны и различны. Таким образом, ОР соответствующего ЛОДУ-2 имеет вид: $Y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} $.

Правая часть данного ЛНДУ-2 имеет вид $\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. В ней необходимо рассматривать коэффициент показателя степени экспоненты $\alpha =3$. Этот коэффициент не совпадает ни с одним из корней характеристического уравнения. Поэтому ЧР данного ЛНДУ-2 имеет вид $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $.

Будем искать коэффициенты $A$, $B$ методом НК.

Находим первую производную ЧР:

$U"=\left(A\cdot x+B\right)^{{"} } \cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=A\cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot 3\cdot e^{3\cdot x} =\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot e^{3\cdot x} .$

Находим вторую производную ЧР:

$U""=\left(A+3\cdot A\cdot x+3\cdot B\right)^{{"} } \cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=3\cdot A\cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot 3\cdot e^{3\cdot x} =\left(6\cdot A+9\cdot A\cdot x+9\cdot B\right)\cdot e^{3\cdot x} .$

Подставляем функции $U""$, $U"$ и $U$ вместо $y""$, $y"$ и $y$ в данное ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x}. $ При этом, поскольку экспонента $e^{3\cdot x} $ входит как множитель во все составляющие, то её можно опустить. Получаем:

$6\cdot A+9\cdot A\cdot x+9\cdot B-3\cdot \left(A+3\cdot A\cdot x+3\cdot B\right)-18\cdot \left(A\cdot x+B\right)=36\cdot x+12.$

Выполняем действия в левой части полученного равенства:

$-18\cdot A\cdot x+3\cdot A-18\cdot B=36\cdot x+12.$

Применяем метод НК. Получаем систему линейных уравнений с двумя неизвестными:

$-18\cdot A=36;$

$3\cdot A-18\cdot B=12.$

Решение этой системы таково: $A=-2$, $B=-1$.

ЧР $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $ для нашей задачи выглядит следующим образом: $U=\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

ОР $y=Y+U$ для нашей задачи выглядит следующим образом: $y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

С целью поиска ЧР, удовлетворяющего заданным начальным условиям, находим производную $y"$ ОР:

$y"=-3\cdot C_{1} \cdot e^{-3\cdot x} +6\cdot C_{2} \cdot e^{6\cdot x} -2\cdot e^{3\cdot x} +\left(-2\cdot x-1\right)\cdot 3\cdot e^{3\cdot x} .$

Подставляем в $y$ и $y"$ начальные условия $y=6$ при $x=0$ и $y"=1$ при $x=0$:

$6=C_{1} +C_{2} -1; $

$1=-3\cdot C_{1} +6\cdot C_{2} -2-3=-3\cdot C_{1} +6\cdot C_{2} -5.$

Получили систему уравнений:

$C_{1} +C_{2} =7;$

$-3\cdot C_{1} +6\cdot C_{2} =6.$

Решаем её. Находим $C_{1} $ по формуле Крамера, а $C_{2} $ определяем из первого уравнения:

$C_{1} =\frac{\left|\begin{array}{cc} {7} & {1} \\ {6} & {6} \end{array}\right|}{\left|\begin{array}{cc} {1} & {1} \\ {-3} & {6} \end{array}\right|} =\frac{7\cdot 6-6\cdot 1}{1\cdot 6-\left(-3\right)\cdot 1} =\frac{36}{9} =4; C_{2} =7-C_{1} =7-4=3.$

Таким образом, ЧР данного дифференциального уравнения имеет вид: $y=4\cdot e^{-3\cdot x} +3\cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.