Дисперсионный анализ служит для. Многофакторный дисперсионный анализ

Дисперсионный анализ (от латинского Dispersio – рассеивание / на английском Analysis Of Variance - ANOVA) применяется для исследования влияния одной или нескольких качественных переменных (факторов) на одну зависимую количественную переменную (отклик).

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные): , а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках , дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).

Сущность дисперсионного анализа заключается в расчленении общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и проверке гипотез о значимости влияния этих факторов на исследуемый признак. Сравнивая компоненты дисперсии друг с другом посредством F-критерия Фишера , можно определить, какая доля общей вариативности результативного признака обусловлена действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок : , которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых факторов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты эксперимента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным .

Дисперсионный анализ используют, если зависимая переменная измеряется в шкале отношений, интервалов или порядка, а влияющие переменные имеют нечисловую природу (шкала наименований).

Примеры задач

В задачах, которые решаются дисперсионным анализом, присутствует отклик числовой природы, на который воздействует несколько переменных, имеющих номинальную природу. Например, несколько видов рационов откорма скота или два способа их содержания и т.п.

Пример 1: В течение недели в трех разных местах работало несколько аптечных киосков. В дальнейшем мы можем оставить только один. Необходимо определить, существует ли статистически значимое отличие между объемами реализации препаратов в киосках. Если да, мы выберем киоск с наибольшим среднесуточным объемом реализации. Если же разница объема реализации окажется статистически незначимой, то основанием для выбора киоска должны быть другие показатели.

Пример 2: Cравнение контрастов групповых средних. Семь политических пристрастий упорядочены от крайне либеральные до крайне консервативные, и линейный контраст используется для проверки того, есть ли отличная от нуля тенденция к возрастанию средних значений по группам - т. е. есть ли значимое линейное увеличение среднего возраста при рассмотрении групп, упорядоченных в направлении от либеральных до консервативных.

Пример 3: Двухфакторный дисперсионный анализ. На количество продаж товара, помимо размеров магазина, часто влияет расположение полок с товаром. Данный пример содержит показатели недельных продаж, характеризуемые четырьмя типами расположения полок и тремя размерами магазинов. Результаты анализа показывают, что оба фактора - расположение полок с товаром и размер магазина -влияют на количество продаж, однако их взаимодействие значимым не является.

Пример 4: Одномерный ANOVA: Рандомизированный полноблочный план с двумя обработками. Исследуется влияние на припек хлеба всех возможных комбинаций трех жиров и трех рыхлителей теста. Четыре образца муки, взятые из четырех разных источников, служили в качестве блоковых факторов.Необходимо выявить значимость взаимодействия жир-рыхлитель. После этого определить различные возможности выбора контрастов, позволяющих выяснить, какие именно комбинации уровней факторов различаются.

Пример 5: Модель иерархического (гнездового) плана с смешанными эффектами. Изучается влияние четырех случайно выбранных головок, вмонтированных в станок, на деформацию производимых стеклянных держателей катодов. (Головки вмонтированы в станок, так что одна и та же головка не может использоваться на разных станках). Эффект головки обрабатывается как случайный фактор. Статистики ANOVA показывают, что между станками нет значимых различий, но есть признаки того, что головки могут различаться. Различие между всеми станками не значимо, но для двух из них различие между типами головок значимо.

Пример 6: Одномерный анализ повторных измерений с использованием плана расщепленных делянок. Этот эксперимент проводился для определения влияния индивидуального рейтинга тревожности на сдачу экзамена в четырех последовательных попытках. Данные организованы так, чтобы их можно было рассматривать как группы подмножеств всего множества данных ("всей делянки"). Эффект тревожности оказался незначимым, а эффект попытки - значим.

Перечень методов

  • Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач ; факторы, влияющие на объёмы продаж .

Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности:

  • Однофакторная параметрическая модель : метод Шеффе .
  • Однофакторная непараметрическая модель [Лагутин М.Б., 237]: критерий Краскела-Уоллиса [Холлендер М., Вульф Д.А., 131], критерий Джонкхиера [Лагутин М.Б., 245].
  • Общий случай модели с постоянными факторами, теорема Кокрена [Афифи А., Эйзен С., 234].

Данные представляют собой двухкратные повторные наблюдения:

  • Двухфакторная непараметрическая модель : критерий Фридмана [Лапач, 203], критерий Пейджа [Лагутин М.Б., 263]. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
  • Двухфакторная непараметрическая модель для неполных данных

История

Откуда произошло название дисперсионный анализ ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. Первоначально дисперсионный анализ был разработан для обработки данных, полученных в ходе специально поставленных экспериментов, и считался единственным методом, корректно исследующим причинные связи. Метод применялся для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Литература

  1. Шеффе Г. Дисперсионный анализ. - М., 1980.
  2. Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
  3. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  4. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. - Киев: Морион, 2002.
  5. Лагутин М. Б. Наглядная математическая статистика. В двух томах. - М.: П-центр, 2003.
  6. Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ.
  7. Холлендер М., Вульф Д.А. Непараметрические методы статистики.

Ссылки

Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

от количества рассматриваемых независимых факторов;

от количества результативных переменных, подверженных действию факторов;

от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть – различных) выборок . Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок , то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе . Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

    вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

    вариативность, обусловленную взаимодействием исследуемых независимых переменных.

    вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

Дисперсионный анализ есть совокупность статистических методов, предназначенных для проверки гипотез о связи между определенными признаками и исследуемыми факторами, которые не имеют количественного описания, а также для установления степени влияния факторов и их взаимодействия. В специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variations). Впервые этот метод был разработан Р. Фишером в 1925 г.

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной. По сути, он осуществляет тестирование гипотезы о равенстве средних арифметических нескольких выборок. Таким образом, его можно рассматривать как параметрический критерий для сравнения центров сразу нескольких выборок. Если использовать этот метод для двух выборок, то результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако, в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Дисперсионный анализ в статистике базируется на законе: сумма квадратов отклонений объединенной выборки равна сумме квадратов внутригрупповых отклонений и сумме квадратов межгрупповых отклонений. Для исследования используется критерий Фишера для установления значимости различия межгрупповых дисперсий от внутригрупповых. Однако для этого необходимыми предпосылками являются нормальность распределения и гомоскедастичность (равенство дисперсий) выборок. Различают одномерный (однофакторный) дисперсионный анализ и многомерный (многофакторный). Первый рассматривает зависимость исследуемой величины от одного признака, второй - сразу от многих, а также позволяет выявить связь между ними.

Факторы

Факторами называют контролируемые обстоятельства, что влияют на конечный результат. Его уровнем или способом обработки называют значение, которое характеризует конкретное проявление этого условия. Эти цифры обычно подают в номинальной или порядковой шкале измерений. Часто выходные значения измеряют в количественных или порядковых шкалах. Тогда возникает проблема группировки выходных данных в ряде наблюдений, что соответствуют примерно одинаковым числовым значениям. Если количество групп взять чрезмерно большим, то количество наблюдений в них может оказаться недостаточным для получения надежных результатов. Если брать число чрезмерно малым, это может привести к потере существенных особенностей влияния на систему. Конкретный способ группировки данных зависит от объема и характера варьирования значений. Количество и размеры интервалов при однофакторном анализе чаще всего определяют по принципу равных промежутков или по принципу равных частот.

Задачи дисперсионного анализа

Итак, существуют случаи, когда нужно сравнить две или больше выборок. Именно тогда и целесообразно применение дисперсионного анализа. Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии. Суть изучения состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора. Рассмотрим ряд задач, которые решает типичный дисперсионный анализ.

Пример 1

В цехе есть ряд станков - автоматов, которые изготавливают определенную деталь. Размер каждой детали - это случайная величина, которая зависит от настройки каждого станка и случайных отклонений, возникающих в процессе изготовления деталей. Нужно по данным измерений размеров деталей определить, одинаково ли настроены станки.

Пример 2

Во время изготовления электрического аппарата используют различные типы изоляционной бумаги: конденсаторную, электротехническую и др. Аппарат можно пропитать различными веществами: эпоксидной смолой, лаком, смолой МЛ-2 и др. Утечки можно устранять под вакуумом при повышенном давлении, при нагреве. Пропитывать можно методом погружения в лак, под непрерывной струей лака и т. п. Электрический аппарат в целом заливают определенным компаундом, вариантов которого есть несколько. Показателями качества являются электрическая прочность изоляции, температура перегрева обмотки в рабочем режиме и ряд других. Во время отработки технологического процесса изготовления аппаратов надо определить, как влияет каждый из перечисленных факторов на показатели аппарата.

Пример 3

Троллейбусное депо обслуживает несколько троллейбусных маршрутов. На них работают троллейбусы различных типов, и оплату за проезд собирают 125 контролеров. Руководство депо интересует вопрос: как сравнить экономические показатели работы каждого контролера (выручку) учитывая различные маршруты, различные типы троллейбусов? Как определить экономическую целесообразность выпуска троллейбусов определенного типа на тот или другой маршрут? Как установить обоснованные требования к величине выручки, которую приносит кондуктор, на каждом маршруте в различных типах троллейбусов?

Задача по выбору метода состоит в том, как получить максимум информации относительно влияния на конечный результат каждого фактора, определить числовые характеристики такого влияния, их надежность при минимальных затратах и за максимально короткое время. Решить такие задачи позволяют методы дисперсионного анализа.

Однофакторный анализ

Исследование своей целью ставит оценку величины влияния конкретного случая на анализируемый отзыв. Другой задачей однофакторного анализа может быть сравнение двух или нескольких обстоятельств друг с другом с целью определения разницы их влияния на отзыв. Если нулевую гипотезу отвергают, то следующим этапом будет количественное оценивание и построение доверительных интервалов для полученных характеристик. В случае, когда нулевая гипотеза не может быть отброшенной, обычно ее принимают и делают вывод о сущности влияния.

Однофакторный дисперсионный анализ может стать непараметрическим аналогом рангового метода Краскела-Уоллиса. Он разработан американскими математиком Уильямом Краскелом и экономистом Вильсоном Уоллисом в 1952 г. Этот критерий назначен для проверки нулевой гипотезы о равенстве эффектов влияния на исследуемые выборки с неизвестными, но равными средними величинами. При этом количество выборок должно быть больше двух.

Критерий Джонкхиера (Джонкхиера-Терпстра) был предложен независимо друг от друга нидерландским математиком Т. Дж. Терпстром в 1952 г. и британским психологом Е. Р. Джонкхиером в 1954 г. Его применяют тогда, когда заранее известно, что имеющиеся группы результатов упорядочены по росту влияния исследуемого фактора, который измеряют в порядковой шкале.

М - критерий Бартлетта, предложенный британским статистиком Маурисом Стивенсоном Бартлеттом в 1937 г., применяют для проверки нулевой гипотезы о равенстве дисперсий нескольких нормальных генеральных совокупностей, с которых взяты исследуемые выборки, в общем случае имеющие различные объемы (число каждой выборки должно быть не меньше четырех).

G - критерий Кохрена, который открыл американец Вильям Геммел Кохрен в 1941 г. Его используют для проверки нулевой гипотезы о равенстве дисперсий нормальных генеральных совокупностей по независимым выборкам равного объема.

Непараметрический критерий Левене, предложенный американским математиком Ховардом Левене в 1960 г., является альтернативой критерия Бартлетта в условиях, когда нет уверенности в том, что исследуемые выборки подчиняются нормальному распределению.

В 1974 г. американские статистики Мортон Б. Браун и Алан Б. Форсайт предложили тест (критерий Брауна-Форсайта), который несколько отличается от критерия Левене.

Двухфакторный анализ

Двухфакторный дисперсионный анализ применяют для связанных нормально распределенных выборок. На практике часто используют и сложные таблицы этого метода, в частности те, в которых каждая ячейка содержит набор данных (повторные измерения), соответствующих фиксированным значениям уровней. Если предположения, необходимые для применения двухфакторного дисперсионного анализа, не выполняются, то используют непараметрический ранговый критерий Фридмана (Фридмана, Кендалла и Смита), разработанный американским экономистом Милтоном Фридманом в конце 1930 г. Этот критерий не зависит от типа распределения.

Предполагается только, что распределение величин является одинаковым и непрерывным, а сами они независимы одна от другой. При проверке нулевой гипотезы выходные данные подают в форме прямоугольной матрицы, в которой строки соответствуют уровням фактора В, а столбцы - уровням А. Каждая ячейка таблицы (блока) может быть результатом измерений параметров на одном объекте или на группе объектов при постоянных значениях уровней обоих факторов. В этом случае соответствующие данные подают как средние значения определенного параметра по всем измерениям или объектам исследуемой выборки. Для применения критерия выходных данных необходимо перейти от непосредственных результатов измерений к их рангу. Ранжирование осуществляют по каждой строке отдельно, то есть величины упорядочивают для каждого фиксированного значения.

Критерий Пейджа (L-критерий), предложенный американским статистиком Е. Б. Пейджем в 1963 г., предназначен для проверки нулевой гипотезы. Для больших выборок применяют аппроксимацию Пейджа. Они при условии реальности соответствующих нулевых гипотез подчиняются стандартному нормальному распределению. В случае, когда в строках исходной таблицы есть одинаковые значения, необходимо использовать средние ранги. При этом точность выводов будет тем хуже, чем больше будет количеств таких совпадений.

Q - критерий Кохрена, предложенный В. Кохреном в 1937 г. Его используют в случаях, когда группы однородных субъектов подвергаются воздействиям, количество которых превышает два и для которых возможны два варианта отзывов - условно-отрицательный (0) и условно-положительный (1). Нулевая гипотеза состоит из равенства эффектов влияния. Двухфакторный дисперсионный анализ дает возможность определить существование эффектов обработки, однако не дает возможности установить, для каких именно столбцов существует этот эффект. При решении данной проблемы применяют метод множественных уравнений Шеффе для связанных выборок.

Многофакторный анализ

Задача многофакторного дисперсионного анализа возникает тогда, когда нужно определить влияние двух или большего количества условий на определенную случайную величину. Исследование предусматривает наличие одной зависимой случайной величины, измеренной в шкале разницы или отношений, и нескольких независимых величин, каждая из которых выражена в шкале наименований или в ранговой. Дисперсионный анализ данных является достаточно развитым разделом математической статистики, который имеет массу вариантов. Концепция исследования общая как для однофакторного, так и для многофакторного. Сущность ее состоит в том, что общую дисперсию разбивают на составляющие, что соответствует определенной группировке данных. Каждой группировке данных соответствует своя модель. Здесь мы рассмотрим только основные положения, нужные для понимания и практического использования наиболее применяемых его вариантов.

Дисперсионный анализ факторов требует достаточно внимательного отношения к сбору и подаче входных данных, а особенно к интерпретации результатов. В отличие от однофакторного, результаты которого можно условно разместить в определенной последовательности, результаты двухфакторного требуют более сложного представления. Еще сложнее ситуация возникает, когда есть три, четыре или больше обстоятельств. Из-за этого в модель достаточно редко включают больше трех (четырех) условий. Примером может быть возникновение резонанса при определенной величине емкости и индуктивности электрического круга; проявление химической реакции при определенной совокупности элементов, из которых построена система; возникновение аномальных эффектов в сложных системах при определенном совпадении обстоятельств. Наличие взаимодействия может в корне изменить модель системы и иногда привести к переосмыслению природы явлений, с которыми имеет дело экспериментатор.

Многофакторный дисперсионный анализ с повторными опытами

Данные измерений достаточно часто можно группировать не по двум, а по большему количеству факторов. Так, если рассматривать дисперсионный анализ срока службы покрышек колес троллейбуса с учетом обстоятельств (завод-производитель и маршрут, на котором эксплуатируются покрышки), то можно выделить как отдельное условие сезон, во время которого эксплуатируются покрышки (а именно: зимняя и летняя эксплуатация). В результате будем иметь задачу трехфакторного метода.

При наличии большего количества условий подход такой же, как и в двухфакторном анализе. Во всех случаях модель пытаются упростить. Явление взаимодействия двух факторов проявляется не так часто, а тройное взаимодействие бывает только в исключительных случаях. Включают то взаимодействие, для которого есть предыдущая информация и серьезные основания, чтобы ее учесть в модели. Процесс выделения отдельных факторов и их учета относительно простой. Поэтому часто возникает желание выделить больше обстоятельств. Этим не следует увлекаться. Чем больше условий, тем менее надежной становится модель и тем больше вероятность ошибки. Сама модель, в которую входит большое количество независимых переменных, становится достаточно сложной для интерпретации и неудобной для практического использования.

Общая идея дисперсионного анализа

Дисперсионный анализ в статистике - это метод получения результатов наблюдений, зависимых от различных одновременно действующих обстоятельств, и оценки их влияния. Управляемую переменную величину, которая соответствует способу воздействия на объект исследования и в некоторый период времени приобретает определенное значение, называют фактором. Они могут быть качественными и количественными. Уровни количественных условий приобретают определенное значение на числовой шкале. Примерами являются температура, давление прессования, количество вещества. Качественные факторы - это разные вещества, разные технологические способы, аппараты, наполнители. Их уровням соответствует шкала наименований.

К качественным можно отнести также вид упаковочного материала, условия хранения лекарственной формы. Сюда же рационально отнести степень измельчения сырья, фракционный состав гранул, имеющих количественное значение, однако плохо поддающихся регулированию, если использовать количественную шкалу. Число качественных факторов зависит от вида лекарственной формы, а также физических и технологических свойств лекарственных веществ. Например, из кристаллических веществ можно получать таблетки прямым прессованием. В этом случае достаточно провести выбор скользящих и смазывающих веществ.

Примеры качественных факторов для различных видов лекарственных форм

  • Настойки. Состав экстрагента, тип экстрактора, способ подготовки сырья, способ получения, способ фильтрации.
  • Экстракты (жидкие, густые, сухие). Состав экстрагента, способ экстракции, тип установки, способ удаления экстрагента и балластных веществ.
  • Таблетки. Состав вспомогательных веществ, наполнители, разрыхлители, связующие, смазывающие и скользящие вещества. Способ получения таблеток, вид технологического оборудования. Вид оболочки и ее компонентов, пленкообразователи, пигменты, красители, пластификаторы, растворители.
  • Инъекционные растворы. Вид растворителя, способ фильтрации, природа стабилизаторов и консервантов, условия стерилизации, способ заполнения ампул.
  • Суппозитории. Состав суппозиторной основы, способ получения суппозиториев, наполнителей, упаковки.
  • Мази. Состав основы, структурные компоненты, способ приготовления мази, вид оборудования, упаковка.
  • Капсулы. Вид оболочечного материала, способ получения капсул, тип пластификатора, консерванта, красителя.
  • Линименты. Способ получения, состав, тип оборудования, тип эмульгатора.
  • Суспензии. Вид растворителя, вид стабилизатора, метод диспергирования.

Примеры качественных факторов и их уровней, изучаемых в процессе изготовления таблеток

  • Разрыхлитель. Крахмал картофельный, глина белая, смесь натрия гидрокарбоната с кислотой лимонной, магния карбонат основной.
  • Связывающий раствор. Вода, крахмальный клейстер, сахарный сироп, раствор метилцеллюлозы, раствор оксипропилметилцеллюлозы, раствор поливинилпирролидона, раствор поливинилового спирта.
  • Скользящая вещество. Аэросил, крахмал, тальк.
  • Наполнитель. Сахар, глюкоза, лактоза, натрия хлорид, фосфат кальция.
  • Смазывающее вещество. Стеариновая кислота, полиэтиленгликоль, парафин.

Модели дисперсионного анализа в исследовании уровня конкурентоспособности государства

Одним из важнейших критериев оценки состояния государства, по которым проводится оценка уровня его благосостояния и социально-экономического развития, является конкурентоспособность, то есть совокупность свойств, присущих национальной экономике, которые определяют способность государства конкурировать с другими странами. Определив место и роль государства на мировом рынке, можно установить четкую стратегию обеспечения экономической безопасности в международных масштабах, ведь она является залогом положительных взаимоотношений России со всеми игроками мирового рынка: инвесторами, кредиторами, правительствами государств.

Для сравнения уровня конкурентоспособности государств проводится ранжирование стран с помощью комплексных индексов, которые включают различные взвешенные показатели. В основу этих индексов заложены ключевые факторы, влияющие на экономическое, политическое и т. п. положение. Комплекс моделей исследования конкурентоспособности государства предусматривает использование методов многомерного статистического анализа (в частности, это дисперсионный анализ (статистика), эконометрическое моделирование, принятие решений) и включает следующие основные этапы:

  1. Формирование системы показателей-индикаторов.
  2. Оценку и прогнозирование индикаторов конкурентоспособности государства.
  3. Сравнение показателей-индикаторов конкурентоспособности государств.

А теперь рассмотрим содержание моделей каждого из этапов данного комплекса.

На первом этапе с помощью методов экспертного изучения формируется обоснованный комплекс экономических показателей-индикаторов оценки конкурентоспособности государства с учетом специфики ее развития на основе международных рейтингов и данных статистических отделов, отражающих состояние системы в целом и ее процессов. Выбор этих показателей обоснован необходимостью отобрать те из них, которые наиболее полно с точки зрения практики позволяют определить уровень государства, его инвестиционную привлекательность и возможности относительной локализации существующих потенциальных и реально действующих угроз.

Основные показатели-индикаторы международных рейтинг-систем - это индексы:

  1. Глобальной конкурентоспособности (ИГК).
  2. Экономической свободы (ИЭС).
  3. Развития человеческого потенциала (ИРЧП).
  4. Восприятия коррупции (ИВК).
  5. Внутренних и внешних угроз (ИВЗЗ).
  6. Потенциала международного влияния (ИПМВ).

Второй этап предусматривает оценку и прогнозирование индикаторов конкурентоспособности государства по международным рейтингам для исследуемых 139 государств мира.

Третий этап предусматривает сравнение условий конкурентоспособности государств при помощи методов корреляционно-регрессионного анализа.

Используя результаты исследования можно определить характер протекания процессов в целом и по отдельным составляющим конкурентоспособности государства; проверить гипотезу о влиянии факторов и их взаимосвязи при соответствующем уровне значимости.

Реализация предложенного комплекса моделей позволит не только оценить сложившуюся ситуацию уровня конкурентоспособности и инвестиционной привлекательности государств, но и проанализировать недостатки управления, предупредить ошибки неправильных решений, не допустить развития кризиса в государстве.

Рассмотренные выше приемы проверки статистических гипотез о существенности различий между двумя средними на практике имеют ограниченное применение. Это связано с тем, что для выявления действия всех возможных условий и факторов на результативный признак полевые и лабораторные опыты, как правило, проводят с использованием не двух, а большего числа выборок (1220 и более).

Часто исследователи сравнивают средние нескольких выборок, объединенных в единый комплекс. Например, изучая влияние различных видов и доз удобрений на урожайность сельскохозяйственных культур опыты повторяют в разных вариантах. В этих случаях попарные сравнения становятся громоздкими, а статистический анализ всего комплекса требует применения особого метода. Такой метод, разработанный в математической статистике, получил название дисперсионного анализа. Впервые его применил английский статистик Р. Фишер при обработке результатов агрономических опытов (1938 г.).

Дисперсионный анализ - это метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов. С помощью метода дисперсионного анализа проводится проверка статистических гипотез относительно средних в нескольких генеральных совокупностях, имеющих нормальное распределение.

Дисперсионный анализ является одним из основных методов статистической оценки результатов эксперимента. Все более широкое применение получает он и в анализе экономической информации. Дисперсионный анализ дает возможность установить, насколько выборочные показатели связи результативного и факторных признаков достаточны для распространения полученных по выборке данных на генеральную совокупность. Достоинством этого метода является то, что он дает достаточно надежные выводы по выборкам небольшого численности.

Исследуя вариацию результативного признака под влиянием одного или нескольких факторов с помощью дисперсионного анализа можно получить помимо общих оценок существенности зависимостей, также и оценку различий в величине средних, которые формируются при различных уровнях факторов, и существенности взаимодействия факторов. Дисперсионный анализ применяется для изучения зависимостей как количественных, так и качественных признаков, а также при их сочетании.

Суть этого метода заключается в статистическом изучении вероятности влияния одного или нескольких факторов, а также их взаимодействия на результативный признак. Согласно этого с помощью дисперсионного анализа решаются три основных задачи: 1) общая оценка существенности различий между групповыми средними; 2) оценка вероятности взаимодействия факторов; 3) оценка существенности различий между парами средних. Чаще всего такие задачи приходится решать исследователям при проведении полевых и зоотехнических опытов, когда изучается влияние нескольких факторов на результативный признак.

Принципиальная схема дисперсионного анализа включает установление основных источников варьирование результативного признака и определение объемов вариации (сумм квадратов отклонений) по источникам ее образования; определение числа степеней свободы, соответствующих компонентам общей вариации; вычисления дисперсий как отношение соответствующих объемов вариации к их числу степеней свободы; анализ соотношения между дисперсиями; оценка достоверности разницы между средними и формулирование выводов.

Указанная схема сохраняется как при простых моделях дисперсионного анализа, когда данные группируются по одному признаку, так и при сложных моделях, когда данные группируются по двумя и большим числом признаков. Однако с увеличением числа групповых признаков усложняется процесс разложение общей вариации по источникам ее образования.

Согласно принципиальной схемы дисперсионный анализ можно представить в виде пяти последовательно выполняемых этапов:

1) определение и разложения вариации;

2) определение числа степеней свободы вариации;

3) вычисление дисперсий и их соотношений;

4) анализ дисперсий и их соотношений;

5) оценка достоверности разницы между средними и формулировка выводов по проверке нулевой гипотезы.

Наиболее трудоемкой частью дисперсионного анализа является первый этап - определение и разложения вариации по источникам ее образования. Порядок разложения общего объема вариации подробно рассматривался в главе 5.

В основе решения задач дисперсионного анализа лежит закон разложения (добавление) вариации, согласно которого общая вариация (колебания) результативного признака делится на две: вариацию, обусловленную действием исследуемого фактора (факторов), и вариацию, вызванную действием случайных причин, то есть

Предположим, что исследуемая совокупность поделена по факторным признаком на несколько групп, каждая из которых характеризуется своей средней величине результативного признака. При этом вариацию этих величин можно объяснить двумя видами причин: такими, которые действуют на результативный признак систематически и поддаются регулировке в ходе проводимого эксперимента и регулировке не поддаются. Очевидно, что межгрупповая (факторная или систематическая) вариация зависит преимущественно от действия исследуемого фактора, а внутригрупповая (остаточная или случайная) - от действия случайных факторов.

Чтобы оценить достоверность различий между групповыми средними, необходимо определить межгрупповую и внутригрупповое вариации. Если межгрупповая (факторная) вариация значительно превышает внутригрупповое (остаточную) вариацию, то фактор влиял на результативный признак, существенно изменяя значения групповых средних величин. Но возникает вопрос, каково соотношение между міжгруповою и внутрішньогруповою вариациями можно рассматривать как достаточное для вывода о достоверности (существенности) различий между групповыми средними.

Для оценки существенности различий между средними и формулировка выводов по проверке нулевой гипотезы (Н0:х1 = х2 =... = хп) в дисперсионном анализе используется своеобразный норматив - Г-критерий, закон распределения которого установил Р.фишер. Этот критерий представляет собой отношение двух дисперсий: факторного, порождаемой действием изучаемого фактора, и остаточной, обусловленной действием случайных причин:

Дисперсионное отношение Г= £>и : £*2 американским статистиком Снедекором предложено обозначать буквой Г в честь изобретателя дисперсионного анализа Р.Фішера.

Дисперсии °2 іо2 являются оценками дисперсии генеральной совокупности. Если выборки с дисперсиями °2 °2 сделаны из одной и той же генеральной совокупности, где вариация величин имела случайный характер, то расхождение в величинах °2 °2 также случайна.

Если в эксперименте проверяют влияние нескольких факторов (А, В, С и т.д.) на результативный признак одновременно, то дисперсия, обусловленная действием каждого из них, должна быть сравнима с °е.гР , то есть

Если значение факторной дисперсии значительно больше остаточной, то фактор существенно влиял на результативный признак и наоборот.

В многофакторных экспериментах кроме вариации, обусловленной действием каждого фактора, практически всегда есть вариация, обусловленная взаимодействием факторов ($ав: ^лс ^вс $лііс). Суть взаимодействия заключается в том, что эффект одного фактора существенно меняется на разных уровнях второго (например, эффективность качества Почвы при разных дозах удобрений).

Взаимодействие факторов также должна быть оценена путем сравнения соответствующих дисперсий 3 ^в.гр:

При исчислении фактического значения Б-критерия в числителе берется большая из дисперсий, поэтому Б > 1. Очевидно, что чем больше критерий Бы, тем значительнее различия между дисперсиями. Если Б = 1, то вопрос об оценке существенности различий дисперсий снимается.

Для определения пределов случайных колебаний отношение дисперсий Г. Фишер разработал специальные таблицы Б-распределения (прил. 4 и 5). Критерий Бы функционально связанный с вероятностью и зависит от числа степеней свободы вариации к1 и к2 двух сравниваемых дисперсий. Обычно используются две таблицы, позволяющие делать выводы о предельно высокое значение критерия для уровней значимости 0,05 и 0,01. Уровень значимости 0,05 (или 5%) означает, что только в 5 случаях из 100 критерий Б может принимать значение, равное указанному в таблице или выше его. Снижение уровня значимости с 0,05 до 0,01 приводит к увеличению значения критерия Бы между двумя дисперсиями в силу действия только случайных причин.

Значение критерия также зависит непосредственно от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности (к-ме), то отношение Бы для двух дисперсий стремится к единице.

Табличное значение критерия Б показывает возможную случайную величину отношения двух дисперсий при заданном уровне значимости и соответствующем числе степеней свободы для каждой из сравниваемых дисперсий. В указанных таблицах приводится величина Б для выборок, сделанных из одной и той же генеральной совокупности, где причины изменения величин только случайные.

Значение Г находят по таблицам (прил. 4 и 5) на пересечении соответствующего столбца (число степеней свободы для большей дисперсии - к1) и строки (число степеней свободы для меньшей дисперсии - к2). Так, если большей дисперсии (числитель Г) к1 = 4, а меньшей (знаменатель Г) к2 = 9, то Га при уровне значимости а = 0,05 составит 3,63 (прил. 4). Итак, в результате действия случайных причин, поскольку малочисленные выборки, дисперсия одной выборки может при 5%-ном уровне значимости превышать дисперсию для второй выборки в 3,63 раза. При снижении уровня значимости с 0,05 до 0,01 табличное значение критерия Г, как отмечалось выше, будет увеличиваться. Так, при тех же степенях свободы к1 = 4 и к2 = 9 и а = 0,01 табличное значение критерия Г составит 6,99 (прил. 5).

Рассмотрим порядок определения числа степеней свободы в дисперсионном анализе. Число степеней свободы, что соответствует общей сумме квадратов отклонений, раскладывается на соответствующие компоненты аналогично разложению сумм квадратов отклонений (^общ = №^гр + ]¥вхр) , то есть общее число степеней свободы (к") раскладывается на число степеней свободы для межгрупповой (к1) и внутригрупповой (к2) вариаций.

Так, если выборочная совокупность, состоящая из N наблюдений, деленная на т групп (число вариантов опыта) и п подгрупп (количество повторностей), то число степеней свободы к соответственно составит:

а) для общей суммы квадратов отклонений (й7заг)

б) для межгрупповой суммы квадратов отклонений ^м.гР)

в) для внутригрупповой суммы квадратов отклонений в в.гР)

Согласно правилу сложения вариации:

Например, если в опыте было сформировано четыре варианта опыта (т = 4) в пяти повторностях каждый (п = 5), и общее количество наблюдений N = = т o п = 4 * 5 = 20, то число степеней свободы соответственно равно:

Зная суммы квадратов отклонений число степеней свободы, можно определить несмещенные (скорректированные) оценки для трех дисперсий:

Нулевую гипотезу Н0 по критерию Б проверяют так же, как и по и-критерию Стьюдента. Чтобы принять решение по проверки Н0, необходимо рассчитать фактическое значение критерия и сравнить его с табличным значением Ба для принятого уровня значимости а и числа степеней свободы к1 и к2 для двух дисперсий.

Если Бфакг > Ба, то в соответствии с принятым уровнем значимости можно сделать вывод, что различия выборочных дисперсий определяются не только случайными факторами; они существенные. Нулевую гипотезу в этом случае отклоняют и есть основание утверждать, что фактор существенно влияет на результативный признак. Если же < Ба, то нулевую гипотезу принимают и есть основание утверждать, что различия между сравниваемыми дисперсиями находятся в границах возможных случайных колебаний: действие фактора на результативный признак не является существенным.

Применение той или иной модели дисперсионного анализа зависит как от количества изучаемых факторов, так и от способа формирования выборок.

в Зависимости от количества факторов, определяющих вариацию результативного признака, выборки могут быть сформированы по одним, двумя и большим числом факторов. Согласно этому дисперсионный анализ делится на однофакторный и многофакторный. Иначе его еще называют однофакторним и многофакторным дисперсионным комплексом.

Схема разложение общей вариации зависит от формирования групп. Оно может быть случайным (наблюдение одной группы не связаны с наблюдениями второй группы) и неслучайным (наблюдение двух выборок связаны между собой общностью условий эксперимента). Соответственно получают независимые и зависимые выборки. Независимые выборки могут быть сформированы как с ровной, так и неровной численностью. Формирование зависимых выборок предполагает их равную численность.

Если группы сформированы в невипадковому порядке, то общий объем вариации результативного признака включает в себя наряду с факторным (міжгруповою) и остаточной вариацией вариацию повторностей, то есть

На практике в большинстве случаев приходится рассматривать зависимые выборки, когда условия для групп и подгрупп выравниваются. Так, в полевом опыте весь участок разбивают на блоки, с максимально вирівняннями условиями. При этом каждый вариант опыта получает равные возможности быть представленным во всех блоках, чем достигается выравнивание условий для всех проверяемых вариантов, опыта. Такой метод построения опыта получил название метода рендомізованих блоков. Аналогично проводятся и опыты с животными.

При обработке методом дисперсионного анализа социально-экономических данных необходимо иметь в виду, что в силу багаточисельності факторов и их взаимосвязи трудно даже при самом тщательном выравнивании условий установить степень объективного влияния каждого отдельного фактора на результативный признак. Поэтому уровень остаточной вариации определяется не только случайными причинами, но и существенными факторами, которые не были учтены при построении модели дисперсионного анализа. В результате этого остаточная, дисперсия как база сравнения иногда становится неадекватным своему назначению, она явно завышается по величине и не может выступать как критерий существенности влияния факторов. В связи с этим при построении моделей дисперсионного анализа становится актуальной проблема отбора важнейших факторов и выравнивания условий для проявления действия каждого из них. Кроме того. применение дисперсионного анализа предполагает нормальный или близкий к нормальному распределение исследуемых статистических совокупностей. Если это условие не выдерживается, то оценки, полученные в дисперсионном анализе, окажутся преувеличенными.

ДИСПЕРСИОННЫЙ АНАЛИЗ

в математической статистике - статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов. Первоначально Д. а. был предложен Р. Фишером для обработки результатов агрономич. опытов по выявлению условий, при к-рых испытываемый сорт сельскохозяйственной культуры дает максимальный урожай. Современные приложения Д. а. охватывают широкий задач экономики, социологии, биологии и техники и трактуются обычно в терминах статистич. теории выявления систематич. различий между результатами непосредственных измерений, выполненных при тех пли иных меняющихся условиях.

Если значения неизвестных постоянных a 1 , ... , a I могут быть измерены с помощью различных методов или измерительных средств М 1 ,. .., M J , и в каждом случае систематич. ошибка b ij может, вообще говоря, зависеть как от выбранного метода Mj, так и от неизвестного измеряемого значения а i , то результаты таких измерений представляют собой суммы вида

где К- количество независимых измерений неизвестной величины а i методом M j , a у ijk - случайная ошибка k-го измерения величины а i методом M j (предполагается, что все y ijk - независимые одинаково распределенные случайные величины, имеющие нулевое математич. ожидание: Е у ijk =0). Такая линейная наз. двухфакторной схемой Д. а.; первый - истинное значение измеряемой величины, второй - метод измерения, причем в данном случае для каждой возможной комбинации значений первого и второго факторов осуществляется одинаковое количество Кнезависимых измерений (это допущение для целей Д. а. не является существенным и введено здесь лишь ради простоты изложения).

Примером подобной ситуации могут служить спортивные соревнования I спортсменов, мастерство к-рых оценивается J судьями, причем каждый участник соревнований выступает Краз (имеет К"попыток"). В этом случае а i - истинное значение показателя мастерства спортсмена с номером i, b ij - систематич. ошибка, вносимая в оценку мастерства i -го спортсмена судьей с номером j, x ijk - оценка, выставленная j -м судьей г-му спортсмену после выполнений последним k-й попытки, а y ijk - соответствующая случайная . Подобная типична для так наз. субъективной экспертизы качества нескольких объектов, осуществляемой группой независимых экспертов. Другой пример - статистич. исследование урожайности сельскохозяйственной культуры в зависимости от одного из J сортов почвы и J методов ее обработки, причем для каждого сорта г почвы и каждого метода обработки с номером J осуществляется kнезависимых экспериментов (в этом примере b ij - истинное значение урожайности для г-го сорта почвы при j-м способе обработки, x ijk - соответствующая экспериментально наблюдаемая урожайность в k-м опыте, а y ijk - ее случайная ошибка, возникающая из-за тех или иных случайных причин; что же касается величин а i , то в агрономич. опытах их разумно считать равными нулю).

Положим c ij =a i +b ij , и пусть с i *, с *j и с ** - результаты осреднений с ij по соответствующим индексам, т. е.

Пусть, кроме того, a=c ** , b i = с i* - с ** , g j = с *j -с ** и d ij = с ij - с i* - с *j +c ** . Идея Д. а. основана на очевидном тождестве

Если символом (c ij )обозначить размерности IJ , получаемый из матрицы ||с ij || порядка IXJ с помощью какого-либо заранее фиксированного способа упорядочивания ее элементов, то (1) можно записать в виде равенства где все векторы имеют IJ , причем a ij =a, b ij =b i , g ij =g j . Так как четыре вектора в правой части (2) ортогональны, то a ij =a - наилучшее приближение функции c ij от аргументов i и j постоянной величиной [в смысле минимальности суммы квадратов отклонений ]. В том же смысле a ij +b ij =a+b i - наилучшее c ij функцией, зависящей лишь от i, a ij +g ij =a+g j - наилучшее приближение c ij функцией, зависящей лишь от j, a a ij +b ij +g ij =a+b i +g j - наилучшее приближение c ij суммой функций, из к-рых одна (напр., a+b i ) зависит лишь от г, а другая - лишь от j. Этот факт, установленный Р. Фишером (см. ) в 1918, позднее послужил основой теории квадратичных приближений функций.

В примере, связанном со спортивными соревнованиями, d ij выражает "взаимодействие" г-го спортсмена и j-го судьи (положительное значение б/у означает "подсуживание", т. с. систематич. завышение /-м судьей оценки мастерства i-го спортсмена, а отрицательное значение б/у означает "засуживание", т. е. систематич. снижение оценки). Равенство всех б/у нулю - необходимое требование, к-рое надлежит предъявлять к работе группы экспертов. В случае же агрономич. опытов такое равенство рассматривается как гипотеза, подлежащая проверке по результатам экспериментов, поскольку основная цель здесь - отыскание таких значений i и j, при к-рых функция (1) достигает максимального значения. Если эта гипотеза верна, то

и значит, выявление наилучших "почвы" и "обработки" может быть осуществлено раздельно, что приводит к существенному сокращению числа экспериментов (напр., можно при каком-либо одном способе обработки испытать все Iсортов "почвы" и определить наилучший сорт, а затем на этом сорте опробовать все J способов "обработки" и найти наилучший способ; общее количество экспериментов с повторениями будет равно (I+J) К). Если же гипотеза {все d ij =0} неверна, то для определения max c ij необходим описанный выше "полный план", требующий при Кповторениях IJК экспериментов.

В ситуации спортивных соревнований функция g ij =g j может трактоваться как систематич. ошибка, допускаемая j-м судьей по отношению ко всем спортсменам. В конечном счете g j - характеристика "строгости" или "либеральности" j-го судьи. В идеале хотелось бы, чтобы все g j были нулевыми, но в реальных условиях приходится мириться с наличием ненулевых значений g j и учитывать это обстоятельство при подведении итогов экспертизы (напр., за основу сравнения мастерства спортсменов можно принять не последовательности истинных значений a+b 1 +g j , ..., a+b I +g j , a лишь результаты упорядочиваний этих чисел по их величине, поскольку при всех j=1, . . . , J такие упорядочивания будут одинаковыми). Наконец, сумма двух оставшихся функций a ij +b ij =a+b i зависит лишь от iи поэтому может быть использована для характеризации мастерства г-го спортсмена. Однако здесь нужно помнить, что Поэтому упорядочивание всех спортсменов по значениям a+b i (или по a+ + b i +g j при каждом фиксированном j) может не совпадать с упорядочиванием по значениям a i . При практической обработке экспертных оценок этим обстоятельством приходится пренебрегать, так как Упомянутый полный план экспериментов не позволяет оценивать отдельно a i и b i* . Таким образом, a+b i =a i + b i* характеризует не только мастерство i -го спортсмена, но и в той или иной мере экспертов к этому мастерству. Поэтому, напр., результаты субъективных экспертных оценок, осуществленных в разное время (в частности, на нескольких Олимпийских играх), едва ли можно считать сопоставимыми. В случае же агрономич. опытов подобные трудности не возникают, поскольку все a i =0 и значит, a+b i =b i* .

Истинные значения функций a, b i , g i и d ij неизвестны и выражаются в терминах неизвестных функций c ij . Поэтому первый этап Д. а. заключается в отыскании статистич. оценок для c ij по результатам наблюдений x ijk .Несмещенная и имеющая минимальную дисперсию для c ij выражается формулой

Так как a, b i , g j и d ij - линейные функции от элементов матрицы ||c ij ||, то несмещенные линейные оценки для этих функций, имеющие минимальную дисперсию, получаются в результате замены аргументов c ij соответствующими оценками, c ij , т. е. причем случайные векторы и определенные так же, как введенные выше (a ij ), (b ij ), (g ij ). и (d ij ), обладают свойством ортогональности, и значит, они представляют собой некоррелированные случайные векторы (иными словами, любые две компоненты, принадлежащие разным векторам, имеют нулевой корреляции). Кроме того, любая вида

некоррелирована с любой из компонент этих четырех векторов. Рассмотрим пять совокупностей случайных величин {x ijk }, {x ijk -x ij* }, Так как

то дисперсии эмпирич. распределений, соответствующих указанным совокупностям, выражаются формулами

Эти эмпирич. дисперсии представляют собой суммы квадратов случайных величин, любые две из к-рых некоррелированы, если только они принадлежат разным суммам; при этом относительно всех y ijk справедливо тождество

объясняющее происхождение термина "Д. а."" Пусть и пусть

в таком случае

где s 2 - дисперсия случайных ошибок y ijk .

На основе этих формул и строится второй этап Д. а., посвященный выявлению влияния первого и второго факторов на результаты эксперимента (в агрономич. опытах первый фактор - сорт "почвы", второй - способ "обработки"). Напр., если требуется проверить гипотезу отсутствия "взаимодействия" факторов, к-рая выражается равенствомто разумно вычислить дисперсионное отношение s 2 3 /s 2 0 = F 3 . Если это отношение значимо отличается от единицы, то проверяемая гипотеза отвергается. Точно так же для проверки гипотезы полезно отношение s 2 2 /s 2 0 = F 2 , к-рое надлежит также сравнить с единицей; если при этом известно, чтото вместо F 2 целесообразно сравнить с единицей отношение

Аналогичным образом можно построить статистику, позволяющую дать заключение о справедливости или ложности гипотезы

Точный смысл понятия значимого отличия указанных отношений от единицы может быть определен лишь с учетом закона распределения случайных ошибок y ijk . В Д. а. наиболее обстоятельно изучена ситуация, в к-рой все y ijk распределены нормально. В этом случае - независимые случайные векторы, а - независимые случайные величины, причем

отношения подчиняются нецентральным распределениям хи-квадрат с f m степенями свободы и параметрами нецентральности l т, m =0, 1, 2, 3, где

Если параметр нецентральности равен нулю, то нецентральное хи-квадрат совпадает с обычным распределением хи-квадрат. Поэтому в случае справедливости гипотезы l 3 =0 отношение подчиняется F-распре делению (распределению дисперсионного отношения) с параметрами f 3 и f 0 . Пусть х- такое число, для к-рого события {F 3 >x} равна заданному значению е, называемому уровнем значимости (таблицы функции х= х (e; f 3 , f 0) имеются в большинстве пособий по математич. статистике). Критерием для проверки гипотезы l 3 =0 служит правило, согласно к-рому эта гипотеза отвергается, если наблюдаемое значение F 3 превышает х;в противном случае гипотеза считается не противоречащей результатам наблюдений. Аналогичным образом конструируются критерии, основанные на статистиках F 2 и F* 2 .

Дальнейшие этапы Д. а. существенно зависят не только от реального содержания конкретной задачи, но также и от результатов статистич. проверки гипотез на втором этапе. Напр., в условиях агрономич. опытов справедливость гипотезы l 3 =0, как указано выше, позволяет более экономно спланировать аналогичные дальнейшие эксперименты (если помимо гипотезы l 3 =0 справедлива также и гипотеза l 2 =0, то это означает, что урожайность зависит лишь от сорта "почвы", и поэтому в дальнейших опытах можно воспользоваться схемой однофакторного Д. а.); если же гипотеза l 3 =0 отвергается, то разумно проверить, нет ли в данной задаче неучтенного третьего фактора? Если сорта "почвы" и способы ее "обработки" варьировались не в одном и том же месте, а в различных географич. зонах, то таким фактором могут быть климатич. или географич. условия, и "обработка" наблюдений потребует применения трехфакторного Д. а.

В случае экспертных оценок статистически подтвержденная справедливость гипотезы l 3 = 0 дает основание для упорядочивания сравниваемых объектов (напр., спортсменов) по значениям величин i=l, . .. , I.

Если же гипотеза l 3 =0 отвергается (в задаче о спортивных соревнованиях это означает статистич. обнаружение "взаимодействия" нек-рых спортсменов и судей), то естественно попытаться перевычнслить все результаты заново, предварительно исключив из рассмотрения x ijk с такими парами индексов (i, j ), для к-рых абсолютные значения статистич. оценок d ij превышают нек-рый заранее установленный допустимый уровень. Это означает, что из матрицы ||x ij* || вычеркиваются нек-рые элементы, и значит, план Д. а. становится неполным.

Модели современного Д. а. охватывают широкий круг реальных экспериментальных схем (напр., схемы неполных планов, со случайно или неслучайно отобранными элементами x ij* ). Соответствующие этим схемам статистич. выводы во многих случаях находятся в стадии разработки. В частности, еще (к 1978) далеки от окончательного решения те задачи, в к-рых результаты наблюдений x ijk =c ij +y ijk не являются одинаково распределенными случайными величинами; еще более трудная задача возникает в случае зависимости величин x ijk . Неизвестно проблемы выбора факторов (даже в линейном случае). Суть этой проблемы заключается в следующем: пусть с=с ( и, v )- и пусть u=u (z, w u=u (z, w )- какие-либо линейные функции от переменных г и w. Фиксируя значения z 1 , . .., z I и w 1 , . . ., w J , можно при каждом заданном выборе линейных функций ии u. определить c ij формулой и построить Д. а. этих величин по результатам соответствующих наблюдений x ijk . Проблема заключается в отыскании таких линейных функций u и u, к-рым соответствует минимальное значение суммы квадратов

где (предполагается, что функция с( и, v )неизвестна). В терминах Д. а. эта проблема сводится к статистич. отысканию таких факторов z=z (u, v w-w (u, v ), к-рым соответствует "наименьшее взаимодействие".

Лит. : Fisher R. A., Statistical methods for research workers, Edinburgh, 1925; Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Xальд А., Математическая с техническими приложениями, пер. с англ., М., 1956; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961.

Л. Н. Большее.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ДИСПЕРСИОННЫЙ АНАЛИЗ" в других словарях:

    Метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия

    - (analysis of variance) Статистический метод, основанный на разложении общей дисперсии (variance) какой либо характеристики населения на составные части, коррелирующие с другими характеристиками, и остаточную вариацию (residual variation). В… … Экономический словарь

    Один из методов математической статистики, применяемый для анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, к рые не поддаются, как правило, количеств. описанию. Рассмотрим простейшую из задач Д. а. Пусть … Физическая энциклопедия

    Дисперсионный анализ - раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Д.а. возник как средство обработки результатов… … Экономико-математический словарь

    дисперсионный анализ - — дисперсионный анализ Раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного,… … Справочник технического переводчика