Этапы построения математической модели. Что такое математическая модель

При построении математической модели системы можно выделить несколько этапов.

1-й этап. Постановка задачи. Этапу предшествует возникновение ситуаций или проблем, осознание которых приводит к мысли их обобщения или решения для последующего достижения какого-либо эффекта. Исходя из этого, объект описывается, отмечаются вопросы, подлежащие решению, и ставится цель исследования. Здесь необходимо уяснить, что мы хотим получить в результате исследований. Предварительно нужно оценить, нельзя ли получить эти результаты другим, более дешевым или доступным путем.

2-й этап. Определение задачи. Исследователь старается определить, к какому виду относится объект, описывает параметры состояния объекта, переменные, характеристики, факторы внешней среды. Необходимо познать закономерности внутренней организации объекта, очертить границы объекта, построить его структуру. Эта работа называется идентификацией системы. Отсюда выбирается задача исследования, которая может решать вопросы: оптимизации, сравнения, оценки, прогноза, анализа чувствительности, выявления функциональных соотношений и т.п.

Концептуальная модель позволяет оценить положение системы во внешней среде, выявить необходимые ресурсы для ее функционирования, влияние факторов внешней среды и то, что мы ожидаем на выходе.

Необходимость проведения исследования возникает из реальных ситуаций, складывающихся в процессе работы системы, когда они в чем-либо начинают не удовлетворять каким-либо старым или новым требованиям. Если недостатки очевидны и известны методы их устранения, то нет необходимости в исследованиях.

Исходя из задачи исследования, можно определить назначение математической модели, которая должна быть построена для исследования. Такие модели могут решать задачи:

· выявления функциональных соотношений, заключающихся в определении количественных зависимостей между входными фактора ми модели и выходными характеристиками исследуемого объекта;



· анализа чувствительности, заключающегося в установлении факторов, которые в большей степени влияют на интересующие исследователя выходные характеристики системы;

· прогноза - оценки поведения системы при некотором предполагаемом сочетании внешних условий;

· оценки - определения, насколько хорошо исследуемый объект будет соответствовать некоторым критериям;

· сравнения, заключающегося в сопоставлении ограниченного числа альтернативных вариантов систем или же в сопоставлении нескольких предлагаемых принципов или методов действия;

· оптимизации, состоящей в точном определении такого сочетания переменных управления, при которых обеспечивается экстремальное значение целевой функции.

Выбор задачи определяет процесс создания и экспериментальной проверки модели.

Любое исследование должно начинаться с построения плана,включающего обследование системы и анализ ее функционирования. В плане должны быть предусмотрены:

· описание функций, реализуемых объектом;

· определение взаимодействий всех систем и элементов объекта;

· определение зависимости между входными и выходными переменными и влияние переменных управляющих воздействий на эти зависимости;

· определение экономических показателей функционирования системы.

Результаты обследования системы и окружающей среды представляются в виде описания процесса функционирования, которое используется для идентификации системы. Идентифицировать систему - значит выявить и изучить ее, а также:

Получить более полную характеристику системы и ее поведения;

Познать объективные закономерности ее внутренней организации;

Очертить ее границы;

Указать на вход, процесс и выход;

Определить ограничения на них;

Построить ее структурную и математическую модели;

Описать ее на каком-либо формальном абстрактном языке;

Определить цели, принуждающие связи, критерии действия системы.

После идентификации системы строится концептуальная модель,являющаяся «идеологической» основой будущей математической модели. Именно в ней отражается состав критериев оптимальности и ограничений, определяющих целевую направленность модели. Перевод на этапе формализации качественных зависимостей в количественные преобразует критерий оптимальности в целевую функцию, ограничения - в уравнения связи, концептуальную модель - в математическую.

На основе концептуальной модели можно построить факторную модель, которая устанавливает логическую связь между параметрами объекта, входными и выходными переменными, факторами внешней среды и параметрами управления, а также учитывать обратные связи в системе.

3-й этап. Составление математической модели. Вид математической модели в значительной степени зависит от цели исследования. Математическая модель может быть в виде математического выражения, представляющего собой алгебраическое уравнение, или неравенство, не имеющее разветвления вычислительного процесса при определении любых переменных состояния модели, целевой функции и уравнений связи.

Для построения такой модели формулируются следующие понятия:

· критерий оптимальности - показатель, выбираемый исследователем, имеющий, как правило, экологический смысл, который служит для формализации конкретной цели управления объектом исследования и выражаемый при помощи целевой функции;

· целевая функция - характеристика объекта, установленная из условия дальнейшего поиска критерия оптимальности, математически связывающая между собой те или иные факторы объекта исследования. Целевая функция и критерий оптимальности - разные понятия. Они могут быть описаны функциями одного и того же вида или же разными функциями;

· ограничения - пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внутренние и внешние свойства объекта. Ограничения определяют область исследования, протекания процессов, пределы изменения параметров и факторов объекта.

Следующим этапом построения системы является формирование математической модели, включающее в себя несколько видов работ: математическую формализацию, численное представление, анализ модели и выбор метода ее решения.

Математическая формализация осуществляется по концептуальной модели. При формализации рассматривают три основные ситуации:

1) известны уравнения, описывающие поведение объекта. В этом случае решением прямой задачи можно найти реакцию объекта на заданный входной сигнал;

2) обратная задача, когда по заданному математическому описанию и известной реакции необходимо найти входной сигнал, вызывающий этот отклик;

3)математическое описание объекта неизвестно, но имеются или могут быть заданы совокупности входных и соответствующих им выходных сигналов. В этом случае имеем дело с задачей идентификации объекта.

При моделировании производственно-экологических объектов в третьей ситуации при решении задачи идентификации используется подход, предложенный Н. Винером, и известный как метод «черного ящика». В качестве «черного ящика» рассматривается объект в целом, вследствие его сложности. Так как внутреннее устройство объекта неизвестно, мы можем изучить «черный ящик», найдя входы и выходы. Сопоставляя входы и выходы, можно написать соотношение

Y = АХ,

где X - вектор входных параметров; Y - вектор выходных параметров; А - оператор объекта, преобразующий Х в Y. Для описания объекта в виде математической зависимости в задачах идентификации используются методы регрессивного анализа. При этом возможно описание объекта множеством математических моделей, так как нельзя вынести обоснованного суждения о его внутреннем устройстве.

Основой выбора метода математического описания является знание физической природы функционирования описываемого объекта достаточно широкого круга эколого-математических методов, возможностей и особенностей ЭВМ, на которой планируется проведение моделирования. Для многих рассматриваемых явлений имеется достаточно много известных математических описаний и типовых математических моделей. При развитой системе математического обеспечения ЭВМ целый ряд процедур моделирования можно осуществит с помощью стандартных программ.

Оригинальные математические модели можно написать на основе проведенных исследований систем и апробированных в реалы ной обстановке. Для проведения новых исследований такие модели корректируются под новые условия.

Математические модели элементарных процессов, физической природа которых известна, записываются в виде тех формул и зависимостей, которые установлены для этих процессов. Как правило, статические задачи выражаются в виде алгебраических выражений, динамические - в виде дифференциальных или конечно-разностных уравнений.

Численное представление модели производится для подготовки ее к реализации на ЭВМ. Задание числовых значений трудностей не представляет. Осложнения встречаются при компактном представлении обширной статистической информации и результатов экспериментов.

Основными методами преобразования табличных значений к аналитическому виду являются: интерполяция, аппроксимация и экстраполяция.

Интерполяция - приближенное или точное нахождение какой-либо величины по известным отдельным значениям этой же или других величин, связанных с ней.

Аппроксимация - замена одних математических объектов другими, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов.

Экстраполяция - продолжение функции за пределы ее области определения, при котором продолженная функция принадлежит заданному классу. Экстраполяция функции обычно производится с помощью формул, в которых использована информация о поведении функций в некотором конечном наборе точек, называемых узлами экстраполяции, принадлежащими к области определения.

Следующим этапом построения является анализ полученной модели и выбор метода ее решения. Основой для вычисления значений выходных характеристик модели служит составленный на ее базе алгоритм решения задачи на ЭВМ. Разработка и программирование такого алгоритма, как правило, не встречают принципиальных трудностей.

Более сложной является организация вычислительного процесса для определения выходных характеристик, лежащих в допустимых областях, особенно для многофакторных моделей. Еще сложнее - поиск решений по оптимизационным моделям. Самая совершенная и адекватная описываемому объекту математическая модель без нахождения оптимального значения бесполезна, она не может быть использована.

Основную роль при разработке алгоритма поиска оптимальны решений играют характер факторов математической модели, чисуи критериев оптимальности, вид целевой функции и уравнений связи Вид целевой функции и ограничений определяет выбор одного и трех основных методов решения эколого-математических моделей:

· аналитического исследования;

· исследования при помощи численных методов;

· исследования алгоритмических моделей с помощью методов экспериментальной оптимизации на ЭВМ.

Аналитические методы отличаются тем, что помимо точного значения искомых переменных они могут давать оптимальное решение в виде готовой формулы, куда входят характеристики внешней среды и начальные условия, которые исследователь может изменять в широких пределах, не меняя самой формулы.

Численные методы дают возможность получить решение путем многократного вычисления по определенному алгоритму, реализующему тот или иной численный метод. В качестве исходных данных для вычисления используются числовые значения параметре объекта, внешней среды и начальных условий. Численные методы являются итеративными процедурами: для проведения следующего шага расчетов (при новом значении управляемых переменных) пользуются результаты предыдущих расчетов, что позволяет получать в процессе вычислений улучшенные результаты и тем самым находить оптимальное решение.

Свойства конкретной алгоритмической модели, на которой базируется алгоритм поиска оптимального решения, например ее линейность или выпуклость, могут быть определены только в процессе экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы экспериментальной оптимизации на ЭВМ. При использовании этих метод производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все действия по разработке алгоритма и программы оптимизации выполняет разработчик модели.

Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.

Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения модели, ее дальнейшего использования, а также все ограничения и допущения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, избежать ошибок при интерпретации ее результатов.

· 4-й этап . Вычисления. При решении задачи необходимо тщательно разобраться с размерностью всех величин, входящих в математическую модель, и определить границы (пределы), в которых будет лежать искомая целевая функция, а также требуемую точность вычислений. Если возможно, то вычисления проводятся при неизменных условиях по несколько раз, чтобы убедиться, что целевая функция не изменяется.

· 5-й этап . Выдача результатов. Результаты исследования объекта могут выдаваться в устной или письменной форме. Они должны включать в себя краткое описание объекта исследования, цели исследования, математическую модель, допущения, принятые при выборе математической модели, основные результаты вычислений, обобщения и выводы.

Этапы создания математических моделей

В общем случае под математической моделью объекта (системы) понимается любое математическое описание, отражающее с требуемой точностью поведения объекта (системы) в реальных условиях. Математическая модель отражает записанную на языке математики совокупность знаний, представлений и гипотез исследователя о моделируемом объекте. Поскольку эти знания никогда не бывают абсолютными, то модель лишь приближенно учитывает поведение реального объекта.

Математическая модель системы – это совокупность соотношений (формул, неравенств, уравнений, логических соотношений), определяющих характеристики состояний системы в зависимости от ее внутренних параметров, начальных условий, входных сигналов, случайных факторов и времени.

Процесс создания математической модели можно разбить на этапы отраженные на рис. 3.2.

Рис. 3.2 Этапы создания математической модели

1. Постановка проблемы и ее качественный анализ. Этот этап включает:

· выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных;

· изучение структуры объекта и основных зависимостей, связывающих его элементы;

· формирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это – этап формализации проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше факторов (т.е. входных и выходных переменных состояния) учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно не только учитывать реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели нередко рост затрат на моделирование может превысить рост эффекта от внедрения моделей в задачи управления).

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент – доказательство существования решений в сформулированной модели (теорема существования). Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменений и т.д.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Здесь приобретают актуальности различные методы обработки данных, решения разнообразных уравнений, вычисления интегралов и т.п. Нередко расчеты по математической модели носят многовариантный, имитационный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные «модельные» эксперименты, изучая «поведение» модели при различных изменениях некоторых условий.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, об адекватности модели, о степени ее практической применимости. Математические методы проверки результатов могут выявлять некорректности построения модели и тем самым сужать класс потенциально правильных моделей.

Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки исходной постановки задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Поскольку современные математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают:

· снимают и объединяют условия, уменьшают число учитываемых факторов.

· нелинейные соотношения заменяют линейными и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, пополняемой новыми условиями, включающей уточненные математические зависимости.

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола. Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой .

ИЛИ (надо завтра уточнить)

Пути решения мат. Модели:

1, Построение м. на основе законов природы (аналитич. Метод)

2. Формальный путь с помощью статистическ. Обработки и результатов измерения (статист. Подход)

3. Построение м. на основе модели элементов (сложных систем)

1, Аналитический – использование при достаточном изуч. Общей закономерности изв. Моделей.

2. эксперимент. При отсутствии информ.

3. Имитационная м. – исследует св-ва объекта сст. В целом.


Пример построения математической модели.

Математи́ческая моде́ль - это математическое представление реальности.

Математическое моделирование - это процесс построения и изучения математических моделей.

Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.

Зачем нужны модели?

Очень часто при исследовании какого либо объекта возникают трудности. Сам оригинал порой бывает недоступен, или его использование не целесообразно, или привлечение оригинала требует больших затрат. Все эти проблемы можно решить с помощью моделирования. Модель в определенном смысле может заменить исследуемый объект.

Простейшие примеры моделей

§ Фотографию можно назвать моделью человека. Для того чтобы узнать человека, достаточно видеть его фотографию.

§ Архитектор создал макет нового жилого района. Он может движением руки переместить высотное здание из одной части в другую. В реальности это было бы не возможно.

Типы моделей

Модели можно разделить на материальные" и идеальные . выше приведенные примеры являются материальными моделями. Идеальные модели часто имеют знаковую форму. Реальные понятия заменяются при этом некоторыми знаками, котое можно легко зафиксировать на бумаге, в памяти компьютера и т.д.

Математическое моделирование

Математическое моделирование относится к классу знакового моделирования. При этом модели могу создаваться из любых математических объектов: чисел, функций, уравнений и т.д.

Построение математической модели

§ Можно отметить несколько этапов построения математической модели:

1. Осмысление задачи, выделение наиболе важных для нас качеств, свойств, велечин и параметров.

2. Введение обозначений.

3. Составление системы ограничений, которым должны удовлетворять введенные величины.

4. Формулировка и запись условий,которым должно удовлетворять искомое оптимальное решение.

Процесс моделирования не заканчивается составлением модели,а только имначинается. Составив модель, выбирают метод нахождения ответа, решают задачу. после того как ответ найден сопостовляют его с реальностью. И возможно что ответ не удовлетворяет, в этом случае модель видоизменяют или даже выбирают совсем другую модель.

Пример математической модели

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы.

Всего, найдите в учебниках или справочниках формулы, характеризующие его закономерности. Заранее подставьте во те из параметров, которые являются константами. Теперь найдите неизвестную информацию о ходе процесса в той или иной его стадии, подставив в формулу известные данные о его ходе в данной стадии.
Например, необходимо моделировать изменение мощности, выделяющейся на резисторе, в зависимости от напряжения на ней. В этом случае, придется воспользоваться известным сочетанием формул: I=U/R, P=UI

При необходимости, составьте график или графиков обо всем ходе процесса. Для этого разбейте его ход на некоторое количество точек (чем их больше, тем точнее результат, но вычисления). Осуществите вычисления для каждой из точек. Особенно трудоемкими будет расчет в том случае, если независимо друг от друга меняется несколько параметров, поскольку осуществить его необходимо для всех их сочетаний.

Если объем расчетов значителен, воспользуйтесь вычислительной техникой. Используйте тот язык программирования, которым вы хорошо владеете. В частности, чтобы рассчитать изменение мощности на нагрузке сопротивлением в 100 Ом при изменении напряжения от 1000 до 10000 В с шагом в 1000 В (в реальности построить такую нагрузку затруднительно, поскольку мощность на ней достигнет мегаватта), можно такую программу на Бейсик:
10 R=100

20 FOR U=1000 TO 10000 STEP 1000

При желании, воспользуйтесь для моделирования одного процесса другим, подчиняющимся тем же закономерностям. Например, маятник можно заменить электрическим колебательным контуром, или наоборот. Иногда имеется возможность воспользоваться в качестве моделирующего тем же явлением, что и моделируемое, но в уменьшенном или увеличенном масштабе. Например, если взять уже упомянутое сопротивление в 100 Ом, но подавать на него напряжения в диапазоне не от 1000 до 10000, а от 1 до 10 В, то мощность, выделяемая на нем, будет изменяться не от 10000 до 1000000 Вт, а от 0,01 до 1 Вт. Такая уместится на столе, а выделяемую мощность можно будет измерить обычным калориметром. После этого результат измерения будет необходимо умножить на 1000000.
Учитывайте, что масштабированию поддаются не все явления. Например, известно, что если все детали теплового двигателя уменьшить или увеличить в одинаковое число раз, то есть, пропорционально, то велика вероятность, что он не заработает. Поэтому при изготовлении двигателей разных размеров увеличения или уменьшения для каждой из его деталей берут различные.

Если цель моделирования ясна, то возникает следующая задача – задача построения математической модели. На этом этапе исходные предположения переводятся на четкий однозначный язык количественных отношений и устраняются нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями.

Построение математической модели выполняется в следующей последовательности :

1) выбор вида моделей и подмоделей;

2) проектирование структуры и состава моделей (подмоделей);

3) разработка отдельных подмоделей;

4) сборка модели в целом;

5) идентификация параметров моделей и подготовка исходных данных;

6) проверка достоверности модели системы.

На первом и втором подэтапах выполняется формализация описания системы: устанавливаются ее структура и существенные зависимости между элементами. Основная задача этих двух подэтапов – получение математического описания процессов в моделируемой системе и её структурной схемы, которая должна быть идентична структурной схеме промышленной системы.

При большой сложности системы первоначально производится разбиение процесса функционирования системы на отдельные достаточно автономные подпроцессы. Таким образом, модель функционально подразделяется на подмодели, каждая из которых в свою очередь может быть разбита на еще более мелкие элементы.

Для правильно построенной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства.

Разработка отдельных подмоделей состоит в составлении их математического описания: в установлении связей между параметрами процесса и выявлении их граничных и начальных условий, а также в формализации процесса в виде системы математических соотношений, характеризующих изучаемый объект (технологический процесс). При составлении математического описания используется либо теоретический, либо статистический подход (см. п.2.2.4).

При выполнении этого этапа особенно важно выбрать математическую модель минимально необходимой сложности. Если модель сложной системы образуется простым объединением полных моделей подсистем нижних уровней, то может возникнуть диспропорция между требуемой точностью и фактической сложностью модели. Эта диспропорция может быть устранена загрублением моделей низшего уровня (после детального автономного исследования их). Возможными вариантами такого загрубления являются:

Сведение детальных описаний многокомпонентного процесса к главной составляющей с поправочными коэффициентами;

Укрупнение состояний и фаз процессов;

Аппроксимация выявленных зависимостей;

Усреднение характеристик процессов по их аргументам;

Замораживание медленно меняющихся параметров;

Снижение требований к точности итераций;

Пренебрежение взаимной зависимостью переменных;

Для выведенных математических соотношений на следующем подэтапе выполняется идентификация их параметров. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Подготовка исходных данных состоит в сборе и обработке результатов наблюдений за изучаемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений. Эти исходные данные, полученные в результате проведения исследования на реальной системе, будут использоваться в качестве параметров модели при реализации ее на ЭВМ.

Проверка достоверности модели системы является первой из проверок, выполняемых на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью будут получены результаты, совпадающие с теми, которые могли бы быть получены при проведении натурного эксперимента с реальной системой. Поэтому определение достоверности модели устанавливает степень доверия к результатам, полученным методом моделирования. Проверка модели на рассматриваемом подэтапе должна дать ответ на вопрос, насколько логическая схема модели системы и используемые математические соотношения отражают замысел модели, сформированный на первом этапе. При этом проверяются возможность решения поставленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений.

Только после того, как разработчик убеждается путем соответствующей проверки в правильности всех этих положений, можно считать, что разработанная логическая схема модели системы пригодна для дальнейшей работы по реализации модели на ЭВМ.