Линеаризация нелинейных мм. Методы линеаризации уравнений

Гармоническая линеаризация.

Назначение метода гармонической линеаризации .

Идея метода гармонической линеаризации была предложена в 1934г. Н. М. Крыловым и Н. Н. Боголюбовым. Применительно к системам автоматического управления этот метод разработан Л. С. Гольдфарбом и Е. П. Поповым. Другие названия этого ме­тода и его модификаций - метод гармонического баланса, метод описывающих функций, метод эквивалентной линеаризации.

Метод гармонической линеаризации - это метод исследова­ния автоколебаний. Он позволяет определять условия существования и параметры возможных автоколебаний в нелинейных си­стемах.

Знание параметров автоколебаний позволяет представить картину возможных процессов в системе и, в частности, определить условия устойчивости. Предположим, например, что в результате исследования автоколебаний в некоторой нелинейной системе мы получили зависимость амплитуды этих автоколебаний А от коэффициента передачи k линейной части системы, показанную на рис.12.1, и знаем, что автоколебания устойчивы.

Из графика следует, что при большом значении коэффициента передачи k, когда k > k кр, в системе существуют автоколебания. Их амплитуда уменьшается до нуля при уменьшении коэффициента передачи k до k кр. На рис.12.1 стрелками условно показан характер переходных процессов при разных значениях k : при k > k кр переходный процесс, вызванный начальным отклонением, стягивается к автоколебаниям. Из рисунка видно, что при k < k кр, система оказывается устойчивой. Таким образом, k кр – это критическое по условию устойчивости значение коэффициента передачи. Его превышение приводит к тому, что исходный режим системы становится неустойчивым и в ней возникают автоколебания. Следовательно, знание условий существования автоколебаний в системе позволяет определить и условия устойчивости.

Идея гармонической линеаризации.

Рассмотрим нелинейную систему, схема которой представлена на рис.12.2, а. Система состоит из линейной части с передаточной функцией W л (s ) и нелинейного звена НЛ с конкретно заданной характеристикой . Звено с коэффициентом - 1 показывает, что обратная связь в системе отрицательна. Полагаем, что в системе существуют автоколебания, амплитуду и частоту которых мы хотим найти. В рассматриваемом режиме входная величина Х нелинейного звена и выходная Y являются периодическими функциями времени.

Метод гармонической линеаризации основан на nредnоложении, что колебания на входе нелинейного звена являются синусоидальны.ми ,т. е. что

, (12.1)

где А амплитуда и - частота этих автоколебаний, а - возможная в общем случае постоянная составляющая, когда автоколебания несимметричны.

В действительности автоколебания в нелинейных системах всегда несинусоидальны вследствие искажения их формы нели­нейным звеном. Поэтому указанное исходное предположение озна­чает, что метод гармонической линеаризации является принципиально приближенным и область его применения ограничена случаями, когда автоколебания на входе нели­нейного звена достаточно близки к синусоидальным. Для того чтобы это имело место, линейная часть системы должна не пропу­скать высших гармоник автоколебаний, т. е. являться фильтром нижних частот . Последнее иллюстрируется рис. 12.2, б. Если, например, частота автоколебаний равна , то линейная часть с показанной на рис. 12.2, б АЧХ будет играть роль фильтра нижних частот для этих колебаний, так как уже вторая гармоника, частота которой равна 2 , практически не пройдет на вход нелинейного звена. Следовательно, в этом случае метод гармонической линеаризации применим.

Если частота автоколебаний равна , линейная часть будет свободно пропускать вторую, третью и другие гармоники автоколебаний. В этом случае нельзя утверждать, что колебания на входе нелинейного звена будут достаточно близки к синусоидальным, т.е. необходимая для применения метода гармонической линеаризации предпосылка не выполняется.

Для того чтобы установить, является ли линейная часть си­стемы фильтром нижних частот и тем самым определить примени­мость метода гармонической линеаризации, необходимо знать частоту автоколебаний. Однако ее можно узнать только в резуль­тате использования этого метода. Таким образом, пpимeнимocть метода гармонической лuнеарuзацuu прuходuтся определять уже в конце uсследованuя в порядке проверки.

Заметим при этом, что если в результате этой проверки гипо­теза о том, что линейная часть системы играет роль фильтра ниж­них частот, не подтверждается, это не означает еще неверности полученных результатов, хотя, разумеется, ставит их под сом­нение и требует дополнительной проверки каким-либо другим методом.

Итак, предположив, что линейная часть системы есть фильтр нижних частот, считаем, что автоколебания на входе нелинейного звена синусоидальны, т.е имеют вид (12.1). Колебания на выходе этого звена будут при этом уже несинусоидальными вследствие их искажения нелинейностью. В качестве примера на рис. 12.3 построена кривая на выходе нелинейного звена для определенной амплитуды входного чисто синусоидального сигнала по характеристике звена, приведенной там же.

Рис.12.3. Прохождение гармонического колебания через нелинейное звено.

Однако, поскольку мы считаем, что линейная часть системы пропускает только основную гармонику автоколебаний, имеет смысл интересоваться только этой гармоникой на выходе нелинейного звена. Поэтому разложим выходные колебания в ряд Фурье и отбросим высшие гармоники. В результате получим:

;

; (12.3)

;

.

Перепишем выражение (12.2) в более удобном для последующего использования виде, подставив в него получающиеся из (12.1) следующие выражения для и :

Подставив эти выражения в (12.2), будем иметь:

(12.4)

. (12.5)

Здесь введены обозначения:

. (12.6)

Дифференциальное уравнение (12.5) справедливо для синусоидального входного сигнала (12.1) и определяет выходной сигнал нелинейного звена без учета высших гармоник.

Коэффициенты в соответствии с выражениями (12.3) для коэффициентов Фурье являются функциями постоянной составляющей , амплитуды А и частоты автоколебаний на входе нелинейного звена. При фиксированных А , и уравнение (12.5) является линейным. Таким образом, если отбросить высшие гармоники, то для фиксированного гармонического сигнала исходное нелинейное звено может быть заменено эквивалентным линейным, описываемым уравнением (12.5). Эта замена и называется гармонической линеаризацией .

На рис. 12.4 условно изображена схема этого звена, состоящая из двух параллельных звеньев.

Рис. 12.4. Эквивалентное линейное звено, полученное в результате гармонической линеаризации.

Одно звено () пропускает постоянную составляющую, а другое – только синусоидальную составляющую автоколебаний.

Коэффициенты называются коэффициентами гармонической линеаризации или гармоническими коэффициентами передачи : - коэффициент передачи постоянной составляющей, а - два коэффициента передачи синусоидальной составляющей автоколебаний. Эти коэффициенты определяются нелинейностью и значениями и по формулам (12.3). Существуют определенные по этим формулам готовые выра­жения для для ряда типовых нелинейных звеньев. Для этих и вообще всех безынерционных нелинейных звеньев вели­чины не зависят от и являются функциями только амплитуды А и .

25. Методы линеаризации нелинейных САУ.

С т. зрения передачи и преобразования сигнала НЛ отлич. от линейных систем тем, что мгновенный коэфффициент передачи зависит от значения входного сигнала. САУ, содержащие звенья, динамика которых описывается НЛ дифференц. уравнениями относят к НЛ системам .

НС-динамика к-х описывается нелин-ми диф ур-ми, это сис-мы, имеющие нелинейную стст-ю хар-ку.

Систему можно представить в виде соединения из 2-х элементов:

можно свести к:

ЛЧ

ЛЧ описывается обычными диф ур-ми с пост-ми коэфф-ми.

НЭ является безинерционным и его выходная величина и вход. величина связаны связаны между собой НЛ алгебраическим уравнением. Нелинейность обусловлена нелинейностью статической характеристики одного из элементов системы.

Методы линеаризации нелинейных САУ.

метод гармонической линеаризации

статическая линеаризация

совместная стат и гармон линеаризация

вибролинеаризация

Метод гармонической линеаризации.

Сущность метода гарм-ой линеаризации заключается в отыскании периодического решения на входе нелинейного элемента, разложение сигнала на выходе нелинейного элемента в ряд Фурье и замены вых сигнала его первой гармоникой. Такая замена справедлива если сис или ЛЧ явл-ся фильтром низкой частоты, т.е. подавляет высшие гармоники.

В рез-те линеаризации нелин стат хар-ку заменяют эквивалентным линейным звеном с коэффициентами

И для гистерезисных хар-ик (петлевых) значение k / Г всегда получается отрицательным, т.е. в ур-ие вводят производную с отриц знаком и эта производная дает запаздывание в работе звена. Такую линеар-ю наз-т гармонической т.к. она связана с разложением нелин колебаний на гармонич-ие составляющие.

k / Г и k Г – гарм-ие коэф-ты усиления нелин звена.

Отличия гарм-ой линеар-ии от обычной:

При гарм-ой линеаризации нелин хар-ку заменят прямой, крутизна которой зависит от амплитуды входного сигнала.

Гарм-ая линеаризация позволяет вместо нелин звена получить линейное, к-т усиления которого зависит от а.

Гарм-ая линеар-ия дает возможность опредилить св-ва нелин САУ методами линейной теории автом-х сис-м.

Статическая линеаризация.

Этот метод приближенного исследования точности нелин сис в стационарных случ реж-ах.

В качестве примера возьмем нелин звено со стат хар-ой типа насыщение.

Пусть на входе стационарный случ. Сигнал.

X (t )= m x + x 0 (t )

Y(t)=m y +y 0 (t)

Задача стат лин-ии закл-ся в том чтобы найти линейное звено дающее при том же вх сигнале x (t ) вых сигнал = эквивалентному вых сигналу нелин звена при этом надо чтобы эквив-й сигнал максимально приближался к y (t ).

Точность линеариз зависит от того, какой критерий выбран для сравнения y экв и y .

Сущ 2 критерия сравнения y экв и y :

1. по первому способу линеаризация осущ-ся исходя из след условий

при выполнении первого условия линейное звено будет полностью эквивалентно исх-му нелин звену в отношении пропускания заданной детерменированной составляющей вх сигнала. Второе условие означает эквивалентность в отношении пропускания центрированной случ составляющей вх сигнала. В связи с тем что дисперсия не определяет полностью закона распределения случ величины выбор ур-ия эквивалентного линейного звена только по дисперсии определяет погрешность данной стат линеаризации.

2. основан на линеаризации разности

К-ты стат линеар-ии:

Совместная статическая и гармоническая линеаризация.

Случай когда в сис присутствуют автоколебания и на вх сис подаются случ воздействия:

f(t)=m f +f 0 (t)

x(t)=m x +x 0 (t)+a*sin w a t

Из-за неприменимости принципа суперпозиции необходимо учитывать наличие всех 3-х составляющих для этого надо осущ-ть совместную стат и гарм линеа-ию, в рез-те этого сигнал на выходе:

в случ симметр-ой нелин стат хар-ки пост состав-ую

m y = y 0 = k сг0 m x

эти 4 к-та опред-ся по фор-ам для гарм-ой и стат линеар-ии. Эти к-ты уже будут зависеть от 4-х составляющих (m x , s x , a , w a )

При исследовании сис m x , s x , a , w a - определяются совместным решением ур-ий для колебательной составляющей и для случ состав-ей.

Применяя совместно стат и гармонич линеаризацию можно решать две задачи:

можно исследовать влияние внешних случ воздействий на параметры возможных автоколебаний.

можно исследовать точность сис в случ режимах при наличии сис гармонических колебаний.

Вибролинеаризация.

Испол-ся для исключения эффекта наличия нелин-х хар-к (люфт и зона нечувст-ти).

При виб-ой лин-ии на вх нелин звена на постоянный или медленно изменяющиюся сигнал накладывается высокочастотная состав-ая и в рез-те этого нелин звено пропускает пост сост-ую как пропорциональное звено.

Рассмотрим метод виб-ой лин-ии на примере релейной сис:

зависимость y 0 = f (x 0 ) ,где y 0 зависит от x 0 и от формы нелин-ой стат хар-ки, т.о. при наличии переменного воздействия, этот элемент пропускает пост воздействие x 0 как звено непрерывного действия.

Сам процесс виб-й лин-ии можно трактовать как процесс модуляции, в данном примере реле явл-ся модулятором высокочас-ое воздействие - сигнал несущей частоты, а НЧ вх сигнал x 0 явл-ся модулирующим сигналом. В данном случае осущ-ся ШИМ и ф-ей модулир-го сигнала явл-ся ширина вых имп-са и условие неискаженной передачи НЧ-составляющей явл-ся f ВЧ / f НЧ >=3

Когда реле работает в составе САУ обычно НЧ сигнал x 0 представляет собой сигнал управления и изменения во времени x 0 и есть перех-ой процесс в сис.

ВЧ воздействие осущ виб-ой лин-ей м.б. получено 3-я способами:

С пом внешнего генератора, создающего вынужд-е колебания на вх нелин элемента.

Путем создания автоколебаний в самой САУ.

Путем создания скользящего режима.

Линеаризация исходной нелинейной модели облегчает решение конкретной задачи исследования. Поэтому для упрощения моделирования и исследования, когда это возможно, желательно заменить нелинейное уравнение приближенным линейным, решение которого с достаточной степенью точности описывает свойство исходной нелинейной системы. Процесс замены нелинейной модели линейной называетсялинеаризацией .

Если дифференциальное уравнение объекта нелинейно из-за нелинейности его статической характеристики, то для линеаризации уравнения необходимо заменить нелинейную статическую характеристику.

чаще всего применяют метод малых отклонений .

Техника составления линеаризованных уравнений принципиально проста. Математическое обоснование этой процедуры заключается в требованиях к виду нелинейности функции . Для допустимости линеаризации достаточно, что , и существуют и непрерывны в некоторой окрестности точки (x 0 , y 0 , u 0). Тогда линеаризация осуществляется при помощи разложения в ряд Тейлора функции в окрестности точки (x 0 , y 0 , u 0) и отбрасыванием всех нелинейных членов этого ряда. Интуитивно ясно, что линеаризованная модель, полученная при помощи разложения в ряд Тейлора, может оказаться пригодной для описания процессов в нелинейном объекте, не связанных с большими изменениями переменных в окрестности точки (x 0 , y 0). Ошибка моделирования тем меньше, чем меньше отклонения переменных.

Таким образом, идея линеаризация нелинейных моделей состоит в том, что вместо (4.42) используют упрощенные математические модели, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории (x 0 ,u 0 ,y 0), удовлетворяющей уравнениям:

. (4.43)

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

, (4.44)

Пример 1 .1. Линеаризовать уравнение состояния .

Решение. Линеаризуем уравнение состояния вблизи траектории, соответствующей . Имеем , откуда решая это уравнение, получаем, что либо (при ), либо .

Рассмотрим второй случай (так как первый тривиален):

.

.

В отклонениях , линеаризованное уравнение имеет вид:

. (4.45)

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (4.44) также не зависят от времени. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые уравнениями:

Если линеаризация приводит к большим погрешностям, то надо выбрать модель, линейную по параметрам:

где a − матрица порядка n ´N ; Y − нелинейная вектор-функция.

К этому классу относятся, к примеру, билинейные объекты:

x "=a 1 x +a 2 xu +a 3 u , где a = (a 1 , a 2 , a 3), Y = (x, xu, u ).

Сказанное относится и к дискретных по времени систем.

Метод гармонической линеаризации позволяет с достаточной для практики точностью исследовать устойчивость и точность нелинейных систем, используя методы, разработанные для линейных систем. Метод дает возможность определить наличие автоколебаний, а также их частоту и амплитуду.

Нелинейная система представляется в виде соединения линейной и нелинейной части (рис. 5).

Рис. 5 Схема нелинейной системы

Выходной сигнал нелинейной части системы в общем случае определяется выражением

Обозначим как передаточную функцию линейной части. Система уравнений примет вид

Найдем условия, при которых на выходе линейной части системы возникают гармонические колебания вида

В этом случае сигнал y(t) нелинейной части будет представлять собой также периодическую функцию, но отличную от синусоиды. Эту функцию можно разложить в ряд Фурье

В этом выражении a i и b i - коэффициенты Фурье. Для симметричных нелинейностей F 0 =0.

Основным условием, которое накладывает метод на линейную часть системы, является условие фильтра нижних частот. Считается, что линейная часть пропускает только первую гармонику колебаний. Данное допущение позволяет считать высшие гармоники в (7.19) несущественными и ограничиться рассмотрением только первой гармоники сигнала y(t).

то выражение (7.20) можно переписать в виде

Первое уравнение системы (7.17) примет вид

В этом выражении


Результат замены нелинейности F(x,sx) выражением

и называется гармонической линеаризацией. Величины q и q 1 называются коэффициентами гармонической линеаризации или просто гармоническими коэффициентами. Для однозначных нелинейностей обычно q 1 =0 . Формулы для гармонических коэффициентов, соответствующих типовым нелинейностям, приводятся в приложениях.

Принципиальное отличие гармонической линеаризации от обычной состоит в том, что при обычной линеаризации нелинейную характеристику заменяют прямой линией с определенной постоянной крутизной, а при гармонической линеаризации - прямой линией, крутизна которой зависит от амплитуды входного сигнала нелинейного элемента.

Рассмотрим методику определения амплитуды и частоты автоколебаний.

1). В характеристическом уравнении системы, полученном из (7.22) делаем замену s=j и получим

2). Из полученного выражения выделяем вещественную и мнимую части и приравниваем их нулю, что, по критерию Михайлова, соответствует нахождению системы на колебательной границе устойчивости.

  • 3).Решение этой системы дает частоту и значения гармонических коэффициентов. Если эти значения вещественны и положительны, то в системе существует предельный цикл. По значениям гармонических коэффициентов можно определить амплитуду предельного цикла.
  • 4). Общим признаком устойчивости предельного цикла, т.е. существования автоколебаний, является равенство нулю предпоследнего определителя Гурвица при полученных значениях амплитуды и частоты предельного цикла. Часто более удобно использовать условие устойчивости предельного цикла, в основе которого лежит критерий устойчивости Михайлова.

Если это неравенство выполняется, то предельный цикл устойчив и в системе существуют автоколебания с определенными выше амплитудой и частотой. Индекс ”*” означает, что производные вычислены при уже известных значениях гармонических коэффициентах, амплитуды и частоты.

Пример. Допустим, что в уже рассмотренной выше системе стабилизации угла тангажа самолета рулевой привод нелинейный и его структурная схема имеет вид, показанный на рис. 7.6.

Рис.6 Схема нелинейного рулевого привода

Зададим следующие параметры нелинейности скоростной характеристикм рулевого привода: b = 0.12, k 1 = tg =c/b = 6.7. Коэффициенты гармонической линеаризации этой нелинейности определяются выражениями

Заменив в схеме нелинейную характеристику гармоническим коэффициентом, получим передаточную функцию рулевого привода

Подставим эту передаточную функцию в структурную схему системы стабилизации угла тангажа и определим передаточную функцию замкнутой системы

В характеристическом уравнении замкнутой системы сделаем замену s = j и выделим вещественную и мнимую части.

Из второго уравнения системы получим выражение для частоты: , и подставив его в первое уравнение, после преобразований получим

Подставив сюда ранее определенные выражения для коэффициентов характеристического уравнения, можно получить квадратное уравнение относительно гармонического коэффициента, решив которое, найдем

По этим значениям можно вычислить для двух случаев все коэффициенты характеристического уравнения и определить частоты, соответствующие каждому значению q(А). Получим:

Оба значения гармонического коэффициента и соответствующие частоты вещественны и положительны. Следовательно, в системе существуют два предельных цикла. Значения амплитуды предельного цикла определяются численно путем подбора такого значения при котором формула для коэффициента гармонической линеаризации дает значение, равное ранее вычисленному. В рассматриваемом случае получим

Теперь оценим устойчивость предельных циклов. Используем неравенство, полученное из критерия Михайлова, для чего определим

Производная от коэффициента гармонической линеаризации, входящая в полученные выражения, вычисляется по формуле


Расчеты по выше приведенным формулам показывают, что первый предельный цикл не устойчив и возникает он при (0) 0.1166(6.7 0 ). Если начальное отклонение меньше указанного, то процесс на входе нелинейного элемента затухает (рис.7. 7) и система устойчива.


Если начальное значение угла тангажа больше указанного, то процессы сходятся ко второму предельному циклу, который устойчив и, таким образом в системе возникают автоколебания (рис. 8).


Рис. 8

Путем моделирования определено, что область притяжения устойчивого предельного цикла лежит приблизительно в пределах (0) 0.1167 - 1.4 (6.71 0 - 80.2 0 ).

Дифференциальные уравнения можно линеаризовать следующими методами:

1. нелинейная функция рабочей области раскладывается в ряд Тейлора.

2. Заданные в виде графов нелинейные функции линеаризуются в рабочей плоскости прямыми.

3. Вместо непосредственного определения частных производных, вводятся переменные в исходные нелинейные уравнения.

,

. (33)

4. Данный метод основан на определении коэффициентов по методу наименьших квадратов.

, (34)

где - постоянное времени пневмопривода;

- передаточный коэффициент пневмопривода;

- коэффициент демпфирования пневмопривода.

Внутреннее строение элементов САР наиболее просто определяется с помощью структурных схем графов. В отличие от известных структурных схем в графах, переменные указываются в виде времени, а дуги обозначают или параметры, или передаточные функции типовых звеньев. Между ними существует четное соотношение.

Мм нелинейных элементов

Рассмотренные в первой главе методы линеаризации применимы, когда нелинейность, входящая в объект ЛСА, хотя бы один раз дифференцируема или аппроксимируется касательной с малой погрешностью некоторой окрестности близкой к рабочей точке. Существует целый класс нелинейностей, для которых оба условия не выполняются. Обычно это существенные нелинейности. К ним относятся: ступенчатые, кусочно-линейные и многозначные функции с точками разрыва первого рода, а также степенные и транстендентые функции. Использование УВМ, обеспечивающих выполнение логико-алгебраических операций в системах привело к новым типам линейностей, которые представляют через непрерывные переменные с помощью специальной логики.

Для математического описания таких нелинейностей применяют эквивалентные передаточные функции, зависящие от коэффициентов линеаризации, которые получают путем минимизации среднего квадрата ошибки воспроизведения заданного входного сигнала. Форма входных сигналов, поступающих на вход нелинейностей может быть произвольна. На практике наиболее распространение получили гармонические и случайные виды входных сигналов и их временные комбинации. Соответственно и методы линеаризации называются гармоническими и статическими.

Общий метод описания эквивалентных передаточных функций нэ

Весь класс существенных нелинейностей разделены на две группы. К первой группе относится однозначные нелинейности, у которых связь между входными и выходнымивекторными сигналами зависит только от формы статической характеристики нелинейности
.

.

В этом случае, при определенной форме входных сигналов:

.

С помощью матрицы линеаризации
можно найти приближенное значение выходных сигналов:

.

Из (42) следует, что матрица коэффициентов линеаризации однозначных нелинейностей, является действительными величинами и их эквивалентные передаточные функции:

.

Ко второй группе относят двузначные (многозначные) нелинейности, у которых связь между входными и выходными сигналами зависит не только от формы статической характеристики, но так же определяется предысторией входного сигнала. В этом случае выражение (42) запишется в виде:

.

Для учета влияния предыстории входного периодического сигнала будем учитывать не только сам сигнал , но и скорость его изменения, дифференциал.

При входных сигналах:

приближенное значение входного сигнала будет:

где
и
- коэффициенты гармонической линеаризации двухзначных нелинейностей;

- период колебания по правой гармонике;

- гармоническая функция.

Эквивалентная передаточная функция:

Существуют нелинейности более общего вида:

,

,

где
и
- коэффициенты гармонической линеаризации;

- номер гармоники.

Матрицы коэффициентов линеаризации периодической с периодом . Имея это ввиду, передаточную функцию двух двухзначной нелинейности можно представить по аналогии с передаточной функцией

Пользуясь определим обобщенную формулу для вычисления передаточной функции однозначных и двухзначных нелинейностей.

В случае однозначной нелинейности матрица коэффициентов линеаризации , зависящей от параметров вектора
, выберем, таким образом, чтобы линеаризовать среднее значение квадрата разности между точными приближенным
сигналами на входе:

После преобразований, упрощений, ухищрений и усиления бдительности, получим эквивалентную передаточную функцию в виде системы матриц:
,
.

,

при
,
.

.

Определить коэффициент линеаризации для однозначной нелинейности. Когда на ее вход поступает первая гармоника синусоидального сигнала:

где
.

.

Уравнение (56) представляет собой коэффициент линеаризации по первой гармонике для однозначной нелинейности, она определяет эквивалентную передаточную функцию
.

В дальнейшем сравнение формулы для определения коэффициентов линеаризации простейших нелинейностей при подаче на их вход периодических сигналов: синусоидального, треугольного, покажем целесообразность применения получаемых эквивалентных передаточных функций.

Коэффициент линеаризации определим
,
.

,

.

Пример. Определить коэффициент линеаризации двузначной нелинейности, когда на ее вход поступает первая гармоника синусоидального сигнала и имеет один вход. Из системы матриц (60), получим:

,

.

В данном примере входной сигнал запишем в виде:

,

.

Когда для двузначной нелинейности общая эквивалентная функция:

. .