Вычисление векторного произведения. Векторное произведение - определения, свойства, формулы, примеры и решения. Общее уравнение плоскости

Определение. Векторным произведением вектора а (множимое) на не коллинеарный ему вектор (множитель) называется третий вектор с (произведение), который строится следующим образом:

1) его модуль численно равен площади параллелограмма на рис. 155), построенного на векторах т. е. он равен направление перпендикулярно плоскости упомянутого параллелограмма;

3) при этом направление вектора с выбирается (из двух возможных) так, чтобы векторы с составляли правую систему (§ 110).

Обозначение: или

Дополнение к определению. Если векторы коллинеарны, то фигуре считая ее (условно) параллелограммом, естественно приписать нулевую площадь. Поэтому векторное произведение коллинеарных векторов считается равным нуль-вектору.

Поскольку нуль-вектору можно приписать любое направление, это соглашение не противоречит пунктам 2 и 3 определения.

Замечание 1. В термине «векторное произведение» первое слово указывает на то, что результат действия есть вектор (в противоположность скалярному произведению; ср. § 104, замечание 1).

Пример 1. Найти векторное произведение где основные векторы правой системы координат (рис. 156).

1. Так как длины основных векторов равны единице масштаба, то площадь параллелограмма (квадрата) численно равна единице. Значит, модуль векторного произведения равен единице.

2. Так как перпендикуляр к плоскости есть ось то искомое векторное произведение есть вектор, коллинеарный вектору к; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.

3. Из этих двух возможных векторов надо выбрать первый, так как векторы к образуют правую систему (а векторы левую).

Пример 2. Найти векторное произведение

Решение. Как в примере 1, заключаем, что вектор равен либо k, либо -k. Но теперь надо выбрать -k, так как векторы образуют правую систему (а векторы левую). Итак,

Пример 3. Векторы имеют длины, соответственно равные 80 и 50 см, и образуют угол 30°. Приняв за единицу длины метр, найти длину векторного произведения а

Решение. Площадь параллелограмма, построенного на векторах равна Длина искомого векторного произведения равна

Пример 4. Найти длину векторного произведения тех же векторов, приняв за единицу длины сантиметр.

Решение. Так как площадь параллелограмма, построенного на векторах равна то длина векторного произведения равна 2000 см, т. е.

Из сравнения примеров 3 и 4 видно, что длина вектора зависит не только от длин сомножителей но также и от выбора единицы длины.

Физический смысл векторного произведения. Из многочисленных физических величин, изображаемых векторным произведением, рассмотрим только момент силы.

Пусть А есть точка приложения силы Моментом силы относителько точки О называется векторное произведение Так как модуль этого векторного произведения численно равен площади параллелограмма (рис. 157), то модуль момента равняется произведению основания на высоту т. е. силе, умноженной на расстояние от точки О до прямой, вдоль которой действует сила.

В механике доказывается, что для равновесия твердого тела необходимо, чтобы равнялась нулю не только сумма векторов , представляющих силы, приложенные к телу, но также и сумма моментов сил. В том случае, когда все силы параллельны одной плоскости, сложение векторов, представляющих моменты, можно заменить сложением и вычитанием их модулей. Но при произвольных направлениях сил такая замена невозможна. В соответствии с этим векторное произведение определяется именно как вектор, а не как число.


СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ТРЕХ ВЕКТОРОВ И ЕГО СВОЙСТВА

Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.

Рассмотрим свойства смешанного произведения.

  1. Геометрический смысл смешанного произведения. Смешанное произведение 3-х векторов с точностью до знака равно объёму параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .

    Таким образом, и .

    Доказательство . Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения

    Предполагая, что и обозначив через h высоту параллелепипеда, находим .

    Таким образом, при

    Если же , то и . Следовательно, .

    Объединяя оба эти случая, получаем или .

    Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .

  2. Для любых векторов , , справедливо равенство

    Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.

  3. При перестановке любых двух сомножителей смешанное произведение меняет знак.

    Действительно, если рассмотрим смешанное произведение , то, например, или

  4. Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.

    Доказательство .

    Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .

    Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:

    .

    Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.

    Примеры.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Уравнение F(x, y, z) = 0 определяет в пространстве Oxyz некоторую поверхность, т.е. геометрическое место точек, координаты которых x, y, z удовлетворяют этому уравнению. Это уравнение называется уравнением поверхности, а x, y, z – текущими координатами.

Однако, часто поверхность задаётся не уравнением, а как множество точек пространства, обладающих тем или иным свойством. В этом случае требуется найти уравнение поверхности, исходя из её геометрических свойств.


ПЛОСКОСТЬ.

НОРМАЛЬНЫЙ ВЕКТОР ПЛОСКОСТИ.

УРАВНЕНИЕ ПЛОСКОСТИ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ

Рассмотрим в пространстве произвольную плоскостьσ. Её положение определяется заданием вектора , перпендикулярного этой плоскости, и некоторой фиксированной точки M 0 (x 0 , y 0 , z 0 ), лежащей в плоскости σ.

Вектор перпендикулярный плоскости σ, называется нормальным вектором этой плоскости. Пусть вектор имеет координаты .

Выведем уравнение плоскости σ, проходящей через данную точку M 0 и имеющей нормальный вектор . Для этого возьмём на плоскости σ произвольную точку M(x, y, z) и рассмотрим вектор .

Для любой точки M Î σ вектор .Поэтому их скалярное произведение равно нулю . Это равенство – условие того, что точка M Î σ. Оно справедливо для всех точек этой плоскости и нарушается, как только точка M окажется вне плоскости σ.

Если обозначить через радиус-вектор точки M , – радиус-вектор точкиM 0 , то и уравнение можно записать в виде

Это уравнение называется векторным уравнением плоскости. Запишем его в координатной форме. Так как , то

Итак, мы получили уравнение плоскости, проходящей через данную точку. Таким образом, для того чтобы составить уравнение плоскости, нужно знать координаты нормального вектора и координаты некоторой точки, лежащей на плоскости.

Заметим, что уравнение плоскости является уравнением 1-ой степени относительно текущих координат x, y и z .

Примеры.

ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ

Можно показать, что любое уравнение первой степени относительно декартовых координат x, y, z представляет собой уравнение некоторой плоскости. Это уравнение записывается в виде:

Ax+By+Cz+D =0

и называется общим уравнением плоскости, причём координаты A, B, C здесь являются координатами нормального вектора плоскости.

Рассмотрим частные случаи общего уравнения. Выясним, как располагается плоскость относительно системы координат, если один или несколько коэффициентов уравнения обращаются в ноль.

A – это длина отрезка, отсекаемого плоскостью на оси Ox . Аналогично, можно показать, что b и c – длины отрезков, отсекаемых рассматриваемой плоскостью на осях Oy и Oz .

Уравнением плоскости в отрезках удобно пользоваться для построения плоскостей.

Векторное произведение - это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R 3 называется вектор c , удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c===a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения :
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e - единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e - правая, а S - площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c - какой-нибудь вектор, π - любая плоскость, содержащая этот вектор, e - единичный вектор, лежащий в плоскости π и ортогональный к c,g - единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
=Pr e a |c|g
где Pr e a проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c . Такое произведение трех векторов называется смешанным.
V=|a (b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b c=a b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее - представлены в ортонормированном базисе
a=(a x ,a y ,a z)
b=(b x ,b y ,b z)
а система координат правая, то их векторное произведение имеет вид
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запоминания этой формулы:
i =∑ε ijk a j b k
где ε ijk - символ Леви-Чивиты.

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку "Вычислить."

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов .

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba - означает - первым является вектор c , вторым является вектор b и третьим является вектор a .

Определение 2. Тройка некомпланарных векторов abc называется правой (левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2". Тройка некомпланарных векторов abc называется правой (левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b , откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc , изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой (левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с , обозначаемый символом c= [ab ] (или c= [a,b ], или c=a×b ) и удовлетворяющий следующим трем требованиям:

  • длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
  • |c |=|[ab ]|=|a ||b |sinφ ; (1)
  • вектор с ортогонален к каждому из векторов a и b ;
  • вектор c направлен так, что тройка abc является правой.

Векторное произведение векторов обладает следующими свойствами:

  • [ab ]=−[ba ] (антиперестановочность сомножителей);
  • [(λa )b ]=λ [ab ] (сочетательность относительно числового множителя);
  • [(a+b )c ]=[a c ]+[b c ] (распределительность относительно суммы векторов);
  • [aa ]=0 для любого вектора a .

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ =sin180 =sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab ]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a |>0, |b |>0. Тогда из [ab ]=0 и из (1) вытекает, что sinφ =0. Следовательно векторы a и b коллинеарны.

Теорема доказана.

Теорема 2. Длина (модуль) векторного произведения [ab ] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b .

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

Тогда векторное произведение этих векторов имеет вид:

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k , которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i ={1, 0, 0}, j ={0, 1, 0}, k ={0, 0, 1}). Тогда имеем:

Из последнего равенства и соотношений (4), получим:

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b :

Таким образом, результатом векторного произведения векторов a и b будет вектор:

.

Пример 2. Найти векторное произведение векторов [ab ], где вектор a представлен двумя точками. Начальная точка вектора a: , конечная точка вектора a : , вектор b имеет вид .

Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b .