Аппроксимация функции методом наименьших квадратов. Курсовая работа: Аппроксимация функции методом наименьших квадратов

КУРСОВАЯ РАБОТА

Аппроксимация функции методом наименьших квадратов


Введение

эмпирический mathcad аппроксимация

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и MathCAD. Применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи Контрольный расчет позволяет убедиться в правильности работы программы.

Понятие аппроксимация представляет собой приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в использовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом. При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы.

Специалисты в области автоматизации технологических процессов и производств имеют дело с большим объёмом экспериментальных данных, для обработки которых используется компьютер. Исходные данные и полученные результаты вычислений могут быть представлены в табличной форме, используя табличные процессоры (электронные таблицы) и, в частности, Excel. Курсовая работа по информатике позволяет студенту закрепить и развить навыки работы с помощью базовых компьютерных технологий при решении задач в сфере профессиональной деятельности.- система компьютерной алгебры из класса систем автоматизированного проектирования, ориентированная на подготовку интерактивных документов с вычислениями и визуальным сопровождением, отличается легкостью использования и применения для коллективной работы.


1. Общие сведения


Очень часто, особенно при анализе эмпирических данных возникает необходимость найти в явном виде функциональную зависимость между величинами x и у , которые получены в результате измерений.

При аналитическом исследовании взаимосвязи между двумя величинами x и y производят ряд наблюдений и в результате получается таблица значений:


xx 1 x 1 x i X n уy 1 y 1 y i Y n

Эта таблица обычно получается как итог каких-либо экспериментов, в которых x, (независимая величина) задается экспериментатором, а у, получается в результате опыта. Поэтому эти значения у, будем называть эмпирическими или опытными значениями.

Между величинами x и y существует функциональная зависимость, но ее аналитический вид обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу


y = f(x; a1, a2,…, am), (1)


(где a 1 , a 2 ,…, a m - параметры), значения которой при x = x, возможно мало отличались бы от опытных значений у, (i = 1,2,…, п) .

Обычно указывают класс функций (например, множество линейных, степенных, показательных и т.п.) из которого выбирается функция f (x) , и далее определяются наилучшие значения параметров.

Если в эмпирическую формулу (1) подставить исходные x, то получим теоретические значения

Y T i = f (x i ; a1, a2……a m ) , где i = 1,2,…, n .


Разности y i T - у i , называются отклонениями и представляют собой расстояния по вертикали от точек M i до графика эмпирической функции.

Согласно методу наименьших квадратов наилучшими коэффициентами a 1 , a 2 ,…, a m считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции



будет минимальной.

Поясним геометрический смысл метода наименьших квадратов.

Каждая пара чисел (x i , y i ) из исходной таблицы определяет точку M i на плоскости XOY. Используя формулу (1) при различных значениях коэффициентов a 1 , a 2 ,…, a m можно построить ряд кривых, которые являются графиками функции (1). Задача состоит в определении коэффициентов a 1 , a 2 ,…, a m таким образом, чтобы сумма квадратов расстояний по вертикали от точек M i (x i , y i ) до графика функции (1) была наименьшей (рис. 1).



Построение эмпирической формулы состоит из двух этапов: выяснение общего вида этой формулы и определение ее наилучших параметров.

Если неизвестен характер зависимости между данными величинами x и y , то вид эмпирической зависимости является произвольным. Предпочтение отдается простым формулам, обладающим хорошей точностью. Удачный выбор эмпирической формулы в значительной мере зависит от знаний исследователя в предметной области, используя которые он может указать класс функций из теоретических соображений. Большое значение имеет изображение полученных данных в декартовых или в специальных системах координат (полулогарифмической, логарифмической и т.д.). По положению точек можно примерно угадать общий вид зависимости путем установления сходства между построенным графиком и образцами известных кривых.

Определение наилучших коэффициентов a 1 , a 2,…, a m входящих в эмпирическую формулу производят хорошо известным аналитическими методами.

Для того, чтобы найти набор коэффициентовa a 1 , a 2 …..a m , которые доставляют минимум функции S, определяемой формулой (2), используем необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных.

В результате получим нормальную систему для определения коэффициентов a i (i = 1,2,…, m) :



Таким образом, нахождение коэффициентов a i сводится к решению системы (3). Эта система упрощается, если эмпирическая формула (1) линейна относительно параметров a i , тогда система (3) - будет линейной.


1.1 Линейная зависимость


Конкретный вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости y = a 1 + a 2 x система (3) примет вид:


Эта линейная система может быть решена любым известным методом (методом Гаусса, простых итераций, формулами Крамера).


1.2 Квадратичная зависимость


В случае квадратичной зависимости y = a 1 + a 2 x + a 3x2 система (3) примет вид:



1.3 Экспоненциальная зависимость


В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость


y = a 1 * e a2x (6)


где a1 иa2, неопределенные коффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

ln y = ln a1 + a2x(7)


Обозначим ln у и ln a x соответственно через t и c , тогда зависимость (6) может быть записана в виде t = a 1 + a 2 х , что позволяет применить формулы (4) с заменой a 1 на c и у i на t i


1.4 Элементы теории корреляции


График восстановленной функциональной зависимости у(х) по результатам измерений (хi , у i ), i = 1,2, K , n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности n iJ - тех пар (х, у) , компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры хi (соответственно у i ) этих интервалов и числа n iJ - в качестве основы для расчетов.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:


где, и - среднее арифметическое значение соответственно х и у .

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе |р| к 1, тем теснее линейная связь между х и у.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:



где n i = , n f = , а числитель характеризует рассеяние условных средних у, около безусловного среднего y .

Всегда. Равенство = 0 соответствует некоррелированным случайным величинам; = 1 тогда и только тогда, когда имеется точная функциональная связь междуy и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина - ? 2 используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.

Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение.

Можно доказать следующее равенство

Первое слагаемое равно Sост = и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных от теоритических.

Второе слагаемое равно Sрегр = 2 и называется регрессионной суммой квадратов и оно характеризует разброс данных.

Очевидно, что справедливо следующее равенство Sполн = Sост + Sрегр.

Коэффициент детерминированности определяется по формуле:



Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r 2 , который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство r 2 = то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.


2. Постановка задачи


1. Используя метод наименьших квадратов функцию, заданную таблично, аппроксимировать

а) многочленом первой степени;

б) многочленом второй степени;

в) экспоненциальной зависимостью.

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от.

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию.

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.


3. Исходные данные


Функция задана рисунком 1.



4. Расчет аппроксимаций в табличном процессоре Excel


Для проведения расчетов целесообразно воспользоваться табличным процессором Microsoft Excel. И данные расположить как показано на рисунке 2.



Для этого заносим:

·в ячейки A6:A30 заносим значения xi.

·в ячейки B6:B30 заносим значения уi.

·в ячейку C6 вводим формулу =А6^2.

·в ячейки C7:C30 эта формула копируется.

·в ячейку D6 вводим формулу =А6*В6.

·в ячейки D7:D30 эта формула копируется.

·в ячейку F6 вводим формулу =А6^4.

·в ячейки F7:F30 эта формула копируется.

·в ячейку G6 вводим формулу =А6^2*В6.

·в ячейки G7:G30 эта формула копируется.

·в ячейку H6 вводим формулу =LN(B6).

·в ячейки H7:H30 эта формула копируется.

·в ячейку I6 вводим формулу =A6*LN(B6).

·в ячейки I7:I30 эта формула копируется. Последующие шаги делаем с помощью автосуммирования

·в ячейку А33 вводим формулу =СУММ (А6:А30).

·в ячейку B33 вводим формулу =СУММ (В6:В30).

·в ячейку C33 вводим формулу =СУММ (С6:С30).

·в ячейку D33 вводим формулу =СУММ (D6:D30).

·в ячейку E33 вводим формулу =СУММ (E6:E30).

·в ячейку F33 вводим формулу =СУММ (F6:F30).

·в ячейку G33 вводим формулу =СУММ (G6:G30).

·в ячейку H33 вводим формулу =СУММ (H6:H30).

·в ячейку I33 вводим формулу =СУММ (I6:I30).

Аппроксимируем функцию y = f (x) линейной функцией y = a 1 + a 2x. Для определения коэффициентов a1 и a2 воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33 и D33, запишем систему (4) в виде



решив которую, получим a1 = -24,7164 и a2 = 11,63183

Таким образом, линейная аппроксимация имеет вид y= -24,7164 + 11,63183х (12)

Решение системы (11) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 3:



В таблице в ячейках A38:B39 записана формула {=МОБР (A35:B36)}. В ячейках E38:E39 записана формула {=МУМНОЖ (A38:B39, C35:C36)}.


Далее аппроксимируем функцию y = f (x) квадратичной функцией y = a 1 + a 2 x + a 3 x 2. Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33, D33, E33, F33 и G33 запишем систему (5) в виде:



Решив которую, получим a1 = 1,580946, a2 = -0,60819 и a3 = 0,954171 (14)

Таким образом, квадратичная аппроксимация имеет вид:

у = 1,580946 -0,60819х +0,954171 х 2

Решение системы (13) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 4.



В таблице в ячейках A46:C48 записана формула {=МОБР (A41:C43)}. В ячейках F46:F48 записана формула {=МУМНОЖ (A41:C43, D46:D48)}.

Теперь аппроксимируем функцию y = f (х) экспоненциальной функцией y = a 1 e a2x . Для определения коэффициентов a 1 и a 2 прологарифмируем значения y i и используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26 получим систему:



где с = ln(a 1 ).

Решив систему (10) найдем с = 0,506435, a2 = 0.409819.

После потенцирования получим a1 = 1,659365.

Таким образом, экспоненциальная аппроксимация имеет вид y = 1,659365*e 0,4098194x

Решение системы (15) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 5.


В таблице в ячейках A55:B56 записана формула {=МОБР (A51:B52)}. В ячейках E54:E56 записана формула {=МУМНОЖ (A51:B52, С51:С52)}. В ячейке E56 записана формула =EXP(E54).

Вычислим среднее арифметическое x и у по формулам:



Результаты расчета x и y средствами Microsoft Excel представлены на рисунке 6.



В ячейке B58 записана формула =A33/25. В ячейке B59 записана формула =B33/25.

Таблица 2


Поясним как таблица на рисунке 7 составляется.

Ячейки A6:A33 и B6:B33 уже заполнены (см. рис. 2).

·в ячейку J6 вводим формулу =(A6-$B$58)*(B6-$B$59).

·в ячейки J7:J30 эта формула копируется.

·в ячейку K6 вводим формулу =(А6-$В$58)^2.

·в ячейки K7:K30 эта формула копируется.

·в ячейку L6 вводим формулу =(В1-$В$59)^2.

·в ячейки L7:L30 эта формула копируется.

·в ячейку M6 вводим формулу =($Е$38+$Е$39*А6-В6)^2.

·в ячейки M7:M30 эта формула копируется.

·в ячейку N6 вводим формулу =($F$46 +$F$47*A6 +$F$48*A6 Л6-В6)^2.

·в ячейки N7:N30 эта формула копируется.

·в ячейку O6 вводим формулу =($Е$56*ЕХР ($Е$55*А6) - В6)^2.

·в ячейки O7:O30 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования.

·в ячейку J33 вводим формулу =CYMM (J6:J30).

·в ячейку K33 вводим формулу =СУММ (К6:К30).

·в ячейку L33 вводим формулу =CYMM (L6:L30).

·в ячейку M33 вводим формулу =СУММ (М6:М30).

·в ячейку N33 вводим формулу =СУММ (N6:N30).

·в ячейку O33 вводим формулу =СУММ (06:030).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Ехcеl представлены на рисунке 7.



В таблице 8 в ячейке B61 записана формула =J33/(K33*L33^(1/2). В ячейке B62 записана формула =1 - M33/L33. В ячейке B63 записана формула =1 - N33/L33. В ячейке B64 записана формула =1 - O33/L33.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.


4.1 Построение графиков в Excel


Выделим ячейки A1:A25, после этого обратимся к мастеру диаграмм. Выберем точечный график. После того как диаграмма будет построена, щелкнем правой кнопкой мышки на линии графика и выберем добавить линию тренда (соответственно линейную, экспоненциальную, степенную и полиномиальную второй степени).

График линейной аппроксимации


График квадратичной аппроксимации


График экспоненциальной аппроксимации.


5. Аппроксимация функции с помощью MathCAD


Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.


.1 Линейная регрессия


Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:

intercept (x, y) - вычисляет параметр а 1 , смещение линии регрессии по вертикали (см. рис.)

slope (x, y) - вычисляет параметр a 2 , угловой коэффициент линии регрессии (см. рис.)

y(x) = a1+a2*x


Функция corr (у, y(x)) вычисляет коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют линейной зависимости (см. рис.)

.2 Полиноминальная регрессия


Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:

regress (х, у, n) - вычисляет вектор S, в составе которого находятся коэффициенты ai полинома n -й степени;

Значения коэффициентов ai могут быть извлечены из вектора S функцией submatrix (S, 3, length(S) - 1, 0, 0).

Полученные значения коэффициентов используем в уравнении регрессии


y(x) = a1+a2*x+a3*x 2 (см. рис.)

.3 Нелинейная регрессия


Для простых типовых формул аппроксимации предусмотрен ряд функций нелинейной регрессии, в которых параметры функций подбираются программой Mathcad.

К их числу относится функция expfit (x, y, s), которая возвращает вектор, содержащий коэффициенты a1, a2 и a3 экспоненциальной функции

y(x) = a1 ^exp (a2 x) + a3. В вектор S вводятся начальные значения коэффициентов a1, a2 и a3 первого приближения.


Заключение


Анализ результатов расчетов показывает, что линейная аппроксимация наилучшим образом описывает экспериментальные данные.

Результаты полученные с помощью программы MathCAD полностью совпадают со значениями полученными с помощью Excel. Это говорит о верности вычислений.


Список используемой литературы

  1. Информатика: Учебник / Под ред. проф. Н.В. Макаровой. М.: Финансы и статистика 2007
  2. Информатика: Практикум по технологии работы на компьютере / Под. Ред. проф. Н.В. Макаровой. М Финансы и статистика, 2011.
  3. Н.С. Пискунов. Дифференциальное и интегральное исчисление, 2010.
  4. Информатика, Аппроксимация методом наименьших квадратов, методические указания, Санкт-Петербург, 2009.
Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

3. Аппроксимация функций с помощью метода

наименьших квадратов

Метод наименьших квадратов применяется при обработке результатов эксперимента для аппроксимации (приближения) экспериментальных данных аналитической формулой. Конкретный вид формулы выбирается, как правило, из физических соображений. Такими формулами могут быть:

и другие.

Сущность метода наименьших квадратов состоит в следующем. Пусть результаты измерений представлены таблицей:

Таблица 4

x n

y n

(3.1)

где f - известная функция, a 0 , a 1 , …, a m - неизвестные постоянные параметры, значения которых надо найти. В методе наименьших квадратов приближение функции (3.1) к экспериментальной зависимости считается наилучшим, если выполняется условие

(3.2)

то есть сумм a квадратов отклонений искомой аналитической функции от экспериментальной зависимости должна быть минимальна .

Заметим, что функция Q называется невязкой.


Так как невязка

то она имеет минимум. Необходимым условием минимума функции нескольких переменных является равенство нулю всех частных производных этой функции по параметрам. Таким образом, отыскание наилучших значений параметров аппроксимирующей функции (3.1), то есть таких их значений, при которых Q = Q (a 0 , a 1 , …, a m ) минимальна, сводится к решению системы уравнений:

(3.3)

Методу наименьших квадратов можно дать следующее геометрическое истолкование: среди бесконечного семейства линий данного вида отыскивается одна линия, для которой сумма квадратов разностей ординат экспериментальных точек и соответствующих им ординат точек, найденных по уравнению этой линии, будет наименьшей.

Нахождение параметров линейной функции

Пусть экспериментальные данные надо представить линейной функцией:

Требуется подобрать такие значения a и b , для которых функция

(3.4)

будет минимальной. Необходимые условия минимума функции (3.4) сводятся к системе уравнений:

После преобразований получаем систему двух линейных уравнений с двумя неизвестными:

(3.5)

решая которую , находим искомые значения параметров a и b .

Нахождение параметров квадратичной функции

Если аппроксимирующей функцией является квадратичная зависимость

то её параметры a , b , c находят из условия минимума функции:

(3.6)

Условия минимума функции (3.6) сводятся к системе уравнений:


После преобразований получаем систему трёх линейных уравнений с тремя неизвестными:

(3.7)

при решении которой находим искомые значения параметров a , b и c .

Пример . Пусть в результате эксперимента получена следующая таблица значений x и y :

Таблица 5

y i

0,705

0,495

0,426

0,357

0,368

0,406

0,549

0,768

Требуется аппроксимировать экспериментальные данные линейной и квадратичной функциями.

Решение. Отыскание параметров аппроксимирующих функций сводится к решению систем линейных уравнений (3.5) и (3.7). Для решения задачи воспользуемся процессором электронных таблиц Excel .

1. Сначала сцепим листы 1 и 2. Занесём экспериментальные значения x i и y i в столбцы А и В, начиная со второй строки (в первой строке поместим заголовки столбцов). Затем для этих столбцов вычислим суммы и поместим их в десятой строке.

В столбцах C – G разместим соответственно вычисление и суммирование

2. Расцепим листы.Дальнейшие вычисления проведём аналогичным образом для линейной зависимости на Листе 1и для квадратичной зависимости на Листе 2.

3. Под полученной таблицей сформируем матрицу коэффициентов и вектор-столбец свободных членов. Решим систему линейных уравнений по следующему алгоритму:

Для вычисления обратной матрицы и перемножения матриц воспользуемся Мастером функций и функциями МОБР и МУМНОЖ .

4. В блоке ячеек H2: H 9 на основе полученных коэффициентов вычислим значенияаппроксимирующего полинома y i выч ., в блоке I 2: I 9 – отклонения D y i = y i эксп . - y i выч .,в столбце J – невязку:

Полученные таблицы и построенные с помощью Мастера диаграмм графики приведёны на рисунках6, 7, 8.


Рис. 6. Таблица вычисления коэффициентов линейной функции,

аппроксимирующей экспериментальные данные.


Рис. 7. Таблица вычисления коэффициентов квадратичной функции,

аппроксимирующей экспериментальные данные.


Рис. 8. Графическое представление результатов аппроксимации

экспериментальных данных линейной и квадратичной функциями.

Ответ. Аппроксимировали экспериментальные данные линейной зависимостью y = 0,07881 x + 0,442262 c невязкой Q = 0,165167 и квадратичной зависимостью y = 3,115476 x 2 – 5,2175 x + 2,529631 c невязкой Q = 0,002103 .

Задания. Аппроксимировать функцию, заданную таблично, линейной и квадратичной функциями.

Таблица 6

№0

x

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

y

3,030

3,142

3,358

3,463

3,772

3,251

3,170

3,665

1

3,314

3,278

3,262

3,292

3,332

3,397

3,487

3,563

2

1,045

1,162

1,264

1,172

1,070

0,898

0,656

0,344

3

6,715

6,735

6,750

6,741

6,645

6,639

6,647

6,612

4

2,325

2,515

2,638

2,700

2,696

2,626

2,491

2,291

5

1.752

1,762

1,777

1,797

1,821

1,850

1,884

1,944

6

1,924

1,710

1,525

1,370

1,264

1,190

1,148

1,127

7

1,025

1,144

1,336

1,419

1,479

1,530

1,568

1,248

8

5,785

5,685

5,605

5,545

5,505

5,480

5,495

5,510

9

4,052

4,092

4,152

4,234

4,338

4,468

4,599

Аппроксима́ция , или приближе́ние - научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми.

Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности, приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа.

В переносном смысле употребляется в философии как метод приближения , указание на приблизительный, неокончательный характер. Например, в таком смысле термин «аппроксимация» активно употреблялся Сёреном Кьеркегором (1813-1855) в «Заключительном ненаучном послесловии…»

Если функция будет использована только для интерполяции, то достаточно аппроксимировать точки полиномом, скажем, пятой степени:

Намного сложней обстоит дело в случае, если приведенные выше натурные данные служат опорными точками для выявления закона изменения с известными граничными условиями. Например:и. Тут уже качество результата зависит от профессионализма исследователя. В данном случае наиболее приемлемым окажется закон:

Для оптимального подбора параметров уравнений обычно используют метод наименьших квадратов.

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares , OLS ) - математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x 1 , x 2 , ..., x i , ... , x n ;

y 1 , y 2 , ..., y i , ... , y n .

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. 2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx или y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ 2 , то на графике строят зависимость n от λ -2 .

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

.

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум

или (19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

, (20) где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений x i , y i найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек x i , y i от прямой

и найдем значения a и b , при которых φ имеет минимум

;

.

Совместное решение этих уравнений дает

(21)

Среднеквадратичные ошибки определения a и b равны

(23)

. (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5 .

Таблица 5

По формуле (19) определяем:

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

0.005775 кг -1 · м -2 .

По формуле (18) имеем

S J = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м 2 .

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2 .

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м 2 ;

Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

R t = R 0 (1 + α t°) = R 0 + R 0 α t°.

Свободный член определяет сопротивление R 0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R 0 .

Результаты измерений и расчетов приведены в таблице (см. таблицу 6 ).

Таблица 6

(r - bt - a) 2 ,10 -6

По формулам (21), (22) определяем

R 0 = ¯R- α R 0 ¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Найдем ошибку в определении α. Так как , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

;

0.014126 Ом .

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град -1 .

α = (23 ± 4) · 10 -4 град -1 при P = 0.95.

Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона r m и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r 2 m = mλR - 2d 0 R,

где d 0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

λ = (600 ± 6) нм; r 2 m = y; m = x; λR = b; -2d 0 R = a,

тогда уравнение примет вид y = a + bx .

Результаты измерений и вычислений занесены в таблицу 7 .

Таблица 7

y = r 2 , 10 -2 мм 2

y - bx - a, 10 -4

(y - bx - a) 2 , 10 -6

Рассчитываем:

1. a и b по формулам (21), (22).

a = ¯ r 2 - b¯m = (0.208548333 - 0.0594957 · 3.5) = 0.0003133 мм 2 .

2. Рассчитаем среднеквадратичные ошибки для величин b и a по формулам (23), (24)

3. При надежности P = 0.95 по таблице коэффициентов Стьюдента для n = 6 находим t = 2.57 и определям абсолютные ошибки

Δb = 2.57 · 0.000211179 = 6·10 -4 мм 2 ;

Δa = 2.57 · 0.000822424 = 3· 10 -3 мм 2 .

4. Записываем результаты

b = (595 ± 6)·10 -4 мм 2 при Р = 0.95;

a = (0.3 ± 3)·10 -3 мм 2 при Р = 0.95;

Из полученных результатов опыта следует, что в пределах ошибки этого опыта прямая r 2 m = ƒ(m) проходит через начало координат, т.к. если ошибка значения какого-либо параметра окажется сравнимой или превысит значение параметра, то это означает, что скорей всего, настоящее значение этого параметра равно нулю.

В условиях данного эксперимента величина a не представляет интереса. Поэтому мы ею больше заниматься не будем.

5. Подсчитаем радиус кривизны линзы:

R = b / λ = 594.5 / 6 = 99.1 мм .

6. Так как для длины волны дана систематическая ошибка, подсчитаем и для R систематическую ошибку по формуле (16), взяв в качестве систематической ошибки величины b ее случайную ошибку Δb.

Записываем окончательный результат R = (99 ± 2) мм ε ≈ 3% при P = 0.95.

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или ) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных от этих линий и , меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямая y = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184 , синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ

КВАДРАТОВ


1. Цель работы

2. Методические указания

2.2 Постановка задачи

2.3 Методика выбора аппроксимирующей функции

2.4 Общая методика решения

2.5 Методика решения нормальных уравнений

2.7 Методика вычисления обратной матрицы

3. Ручной счет

3.1 Исходные данные

3.2 Система нормальных уравнений

3.3 Решение систем методом обратной матрицы

4. Схема алгоритмов

5. Текст программы

6. Результаты машинного расчета


1. Цель работы

Настоящая курсовая работа является завершающим разделом дисциплины «Вычислительная математика и программирование» и требует от студента в процессе ее выполнения решения следующих задач:

а) практического освоения типовых вычислительных методов прикладной информатики; б) совершенствования навыков разработки алгоритмов и построения программ на языке высокого уровня.

Практическое выполнение курсовой работы предполагает решение типовых инженерных задач обработки данных с использованием методов матричной алгебры, решения систем линейных алгебраических уравнений численного интегрирования. Навыки, приобретаемые в процессе выполнения курсовой работы, являются основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.


2. Методические указания

2.2 Постановка задачи

При изучении зависимостей между величинами важной задачей является приближенное представление (аппроксимация) этих зависимостей с помощью известных функций или их комбинаций, подобранных надлежащим образом. Подход к такой задаче и конкретный метод её решения определяются выбором используемого критерия качества приближения и формой представления исходных данных.

2.3 Методика выбора аппроксимирующей функции

Аппроксимирующую функцию выбирают из некоторого семейства функций, для которого задан вид функции, но остаются неопределенными (и подлежат определению) её параметры т.е.

Определение аппроксимирующей функции φ разделяется на два основных этапа:

Подбор подходящего вида функции ;

Нахождение ее параметров в соответствии с критерием МНК.

Подбор вида функции представляет собой сложную задачу, решаемую методом проб и последовательных приближений. Исходные данные, представленные в графической форме (семейства точек или кривые), сопоставляется с семейством графиков ряда типовых функций, используемых обычно для целей аппроксимации. Некоторые типы функций , используемых в курсовой работе, приведены в таблице 1.

Более подробные сведения о поведении функций, которые могут быть использованы в задачах аппроксимации, можно найти в справочной литературе. В большинстве заданий курсовой работы вид аппроксимирующей функции задан.

2.4 Общая методика решения

После того как выбран вид аппроксимирующей функции (или эта функция задана) и, следовательно, определена функциональная зависимость (1), необходимо найти в соответствии с требованиями МНК значения параметров С 1 , С 2 , …, С m . Как уже указывалось, параметры должны быть определены таком образом, чтобы значение критерия в каждой из рассматриваемых задач было наименьшим по сравнению с его значением при других возможных значениях параметров.

Для решения задачи подставим выражение (1) в соответствующее из выражений и проведем необходимые операции суммирования или интегрирования (в зависимости от вида I). В результате величина I, именуемая в дальнейшем критерием аппроксимации, представляется функцией искомых параметров

Последующее сводиться к отысканию минимума этой функции переменных С k ; определение значений С k =C k * , к=1,m, соответствующих этому элементу I, и является целью решаемой задачи.


Типы функций Таблица 1

Вид функции Название функции
Линейная

Y=C 1 +C 2 ·x+C 3 ·x 2

Квадратичная (параболическая)

Рациональная(полином n -й степени)

Обратно пропорциональная
Степенная дробно-рациональная
Дробно-рациональная(первой степени)

Y=C 1 +C 2 ·X C3

Степенная

Y=C 1 +C 2 ·a C3 · x

Показательная

Y=C 1 +C 2 ·log a x

Логарифмическая

Y=C 1 +C 2 ·X n (0

Иррациональная, алгебраическая

Y=C 1 ·sinx+C 2 cosx

Тригонометрические функции (и обратные к ним)

Возможны следующие два подхода к решению этой задачи: использование известных условий минимума функции нескольких переменных или непосредственное отыскание точки минимума функции каким – либо из численных методов.

Для реализации первого из указанных подходов воспользуемся необходимым условием минимума функции (1) нескольких переменных, в соответствии с которыми в точке минимума должны быть равны нулю частные производные этой функции по всем ее аргументам

Полученные m равенств следует рассматривать как систему уравнений относительно искомых С 1 , С 2 ,…, С m . При произвольном виде функциональной зависимости (1) уравнения (3) оказывается нелинейным относительно величин C k и их решение требует применение приближенных численных методов.

Использование равенства (3) дают, лишь необходимые, но недостаточные условия минимума (2). Поэтому требуется уточнить, обеспечивают ли найденные значения C k * именно минимум функции . В общем случае такое уточнение выходит за рамки данной курсовой работы, и предлагаемые для курсовой работы задания подобраны так, что найденное решение системы (3) отвечает именно минимуму I. Однако, поскольку величина I неотрицательна (как сумма квадратов) и нижняя её граница есть 0 (I=0), то, если существует решение системы (3) единственно, оно отвечает именно минимуму I.

При представлении аппроксимирующей функции общим выражением (1) соответствующие нормальным уравнениям (3) оказываются нелинейными относительно искомых С к. их решение может быть сопряжено со значительными трудностями. В таких случаях предпочтительным являются непосредственный поиск минимума функции в области возможных значений ее аргументов С к, не связанный с использованием соотношений (3). Общая идея подобного поиска сводиться к изменению значений аргументов С к и вычислению на каждом шаге соответствующего значения функции I до минимального или достаточно близко к нему.

2.5 Методика решения нормальных уравнений

Один из возможных способов минимизации критерия аппроксимации (2) предполагает решение системы нормальных уравнений (3). При выборе в качестве аппроксимирующей функции линейной функции искомых параметров нормальные уравнения представляют собой систему линейных алгебраических уравнений.


Систему n линейных уравнений общего вида:

(4) можно записать посредством матричных обозначений в следующем виде: А·Х=В,

; ; (5)

квадратная матрица А называется матрицей системы , а вектора Х и В соответственно вектором-столбцом неизвестных систем и вектором-столбцом ее свободных членов .

В матричном виде исходную систему n линейных уравнений можно записать и так:

Решение системы линейных уравнений сводиться к отысканию значений элементов вектора-столбца (х i), называемых корнями системы. Чтобы эта система имела единственное решение, входящее в нее n уравнение должно быть линейно независимым. Необходимым и достаточным условием этого является неравенство нулю определителя системы, т.е. Δ=detA≠0.

Алгоритм решения системы линейных уравнений подразделяется на прямые и итерационные. На практике никакой метод не может быть бесконечным. Для получения точного решения итерационные методы требуют бесконечного числа арифметических операций. практически это число приходиться брать конечным и поэтому решение в принципе имеет некоторую ошибку, даже если пренебречь ошибками округлений, сопровождающими большинство вычислений. Что же касается прямых методов, то они даже при конечном числе операций могут в принципе дать точное решение, если оно существует.

Прямые и конечные методы позволяют найти решение системы уравнений за конечное число шагов. Это решение будет точным, если все промежутки вычисления проводятся с ограниченной точностью.

2.7 Методика вычисления обратной матрицы

Один из методов решения системы линейных уравнений (4), записываем в матричной форме А·Х=В, связан с использованием обратной матрицы А -1 . В этом случае решение системы уравнений получается в виде

где А -1 –матрица, определяемая следующим образом.

Пусть А –квадратная матрица размером n х n с ненулевым определителем detA≠0. Тогда существует обратная матрица R=A -1 , определяемая условием A·R=E,

где Е –единичная матрица, все элементы главной диагонали которой равны I, а элементы вне этой диагонали -0, Е=, где Е i –вектор-столбец. Матрица К –квадратная матрица размером n х n.

где Rj –вектор-столбец.

Рассмотрим ее первый столбец R=(r 11 , r 21 ,…, r n 1) T , где Т –означает транспонирование. Нетрудно проверить, что произведение A·R равно первому столбцу E 1 =(1, 0, …, 0) Т единичной матрицы Е, т.е. вектор R 1 можно рассмотреть как решение системы линейных уравнений A·R 1 =E 1. Аналогично m –й столбец матрицы R , Rm, 1≤ m ≤ n, представляет собой решение уравнения A·Rm=Em, где Em=(0, …, 1, 0) T m –й столбец единичной матрицы Е.

Таким образом, обратная матрица R представляет собой набор из решений n систем линейных уравнений

A·Rm=Em , 1≤ m ≤ n.

Для решения этих систем можно применять любые методы, разработанные для решения алгебраических уравнений. Однако метод Гаусса дает возможность решать все эти n систем одновременно, а независимо друг от друга. Действительно, все эти системы уравнений отличаются только правой частью, а все преобразования, которые проводятся в процессе прямого хода метода Гаусса, полностью определяются элементами матрицы коэффициентов (матрицы А). Следовательно, в схемах алгоритмов изменению подлежат только блоки, связанные с преобразованием вектора В. В нашем случае одновременно будут преобразовываться n векторов Em, 1≤ m ≤ n. Результатом решения также будет не один вектор, а n векторов Rm, 1≤ m ≤ n.


3. Ручной счет

3.1 Исходные данные

Xi 0,3 0,5 0,7 0,9 1,1
Yi 1,2 0,7 0,3 -0,3 -1,4

3.2 Система нормальных уравнений



3.3 Решение систем методом обратной матрицы

аппроксимация квадрат функция линейный уравнение

5 3,5 2,6 0,5 5 3,5 2,6 0,5

3,5 2,85 2,43 -0,89 0 0,4 0,61 -1,24

2,56 2,43 2,44 -1,86 0 0,638 1,109 -2,116

0 0,4 0,61 -1,24

0 0 0,136 -0,138

Результаты расчета:

С 1 =1,71; С 2 =-1,552; С 3 =-1,015;

Аппроксимирующая функция:


4 . Текст программы

mass=arrayof real;

mass1=array of real;

mass2=array of real;

X,Y,E,y1,delta: mass;

big,r,sum,temp,maxD,Q:real;

i,j,k,l,num: byte;

Procedure VVOD(var E: mass);

For i:=1 to 5 do

Function FI(i ,k: integer): real;

if i=1 then FI:=1;

if i=2 then FI:=Sin(x[k]);

if i=3 then FI:=Cos(x[k]);

Procedure PEREST(i:integer;var a:mass1;var b:mass2);

for l:= i to 3 do

if abs(a) > big then

big:=a; writeln (big:6:4);

writeln("Перестановка уравнений");

if num<>i then

for j:=i to 3 do

a:=a;

writeln("Введите значения Х");

writeln("__________________");

writeln("‚Введите значения Y");

writeln("___________________");

For i:=1 to 3 do

For j:=1 to 3 do

For k:=1 to 5 do

begin A:= A+FI(i,k)*FI(j,k); write(a:7:5); end;

writeln("________________________");

writeln("Матрица Коэффициентов Ai,j");

For i:=1 to 3 do

For j:=1 to 3 do

write (A:5:2, " ");

For i:=1 to 3 do

For j:=1 to 5 do

B[i]:=B[i]+Y[j]*FI(i,j);

writeln("__________________________");

writeln(‘Матрица Коэффициентов Bi ");

For i:=1 to 3 do

write(B[i]:5:2, " ");

for i:=1 to 2 do

for k:=i+1 to 3 do

Q:=a/a; writeln("g=",Q);

for j:=i+1 to 3 do

a:=a-Q*a; writeln("a=",a);

b[k]:=b[k]-Q*b[i]; writeln("b=",b[k]);

x1[n]:=b[n]/a;

for i:=2 downto 1 do

for j:=i+1 to 3 do

sum:=sum-a*x1[j];

x1[i]:=sum/a;

writeln("__________________________");

writeln ("Значение коэффициентов ");

writeln("_________________________");

for i:=1 to 3 do

writeln(" C",i,"=",x1[i]);

for i:=1 to 5 do

y1[i]:= x1[k]*FI(k,i) + x1*FI(k+1,i) + x1*FI(k+2,i);

delta[i]:=abs (y[i]-y1[i]);

writeln (y1[i]);

for i:=1 to 3 do

write (x1[i]:7:3);

for i:=1 to 5 do

if delta[i]>maxD then maxD:=delta;

writeln ("max Delta= ", maxD:5:3);


5 . Результаты машинного расчета

С 1 =1,511; С 2 =-1,237; С 3 =-1,11;

© 2024 - rikk-service.ru Гороскопы, привороты, гадания.