Тема: Методы экспоненциального сглаживания. Сглаживание экспоненциальным методом

Очевидно, что в методе взвешенного скользящего среднего существует множество способов задавать значения весов так, чтобы их сумма была равной 1. Один из таких способов называется экспоненциальным сглаживанием. В этой схеме метода взвешенного среднего для любого t > 1 прогнозируемое значение в момент времени t+1 представляет собой взвешенную сумму фактического объема продаж , за период времени t и прогнозируемого объема продаж , за период времени t Другими словами,

Экспоненциальное сглаживание имеет вычислительные преимущества перед скользящим средним. Здесь, чтобы вычислить , необходимо знать только значения , и , (вместе со значением α). Например, если компании нужно спрогнозировать спрос для 5000 наименований изделий в каждый период времени, то в этом случае необходимо хранить 10001 значений данных (5000 значений , 5000 значений , и значение α), в то время как для выполнения прогноза на основе скользящего среднего по 8 узлам требовалось 40000 значений данных. В зависимости от поведения данных, возможно, потребуется хранить различные значения α для каждого изделия, но даже в этом случае количество хранимой информации значительно меньше, чем при использовании скользящего среднего. Положительная особенность экспоненциального сглаживания состоит в том, что, сохраняя α и последний прогноз, все предыдущие прогнозы также неявно сохраняются.

Рассмотрим некоторые свойства модели экспоненциального сглаживания. Для начала заметим, что если t > 2, то в формуле (1) t можно заменить на t–1, т.е. Подставив это выражение в первоначальную формулу (1), получим

Выполняя последовательно аналогичные подстановки, получим следующее выражение для

Поскольку из неравенства 0 < α < 1 следует, что 0 < 1 – α < 1, то Другими словами, наблюдение , имеет больший вес, чем наблюдение , которое, в свою очередь, имеет больший вес, чем . Это иллюстрирует основное свойство модели экспоненциального сглаживания - коэффициенты при убывают при уменьшении номера k. Также можно показать, что сумма всех коэффициентов (включая коэффициент при ), равна 1.

Из формулы (2) видно, что значением является взвешенная сумма всех предыдущих наблюдений (включая последнее наблюдение ). Последнее слагаемое суммы (2) является не статистическим наблюдением, а «предположением» (можно предположить, например, что ). Очевидно, что с ростом t влияние , на прогноз уменьшается, и в определенный момент им можно будет пренебречь. Даже если значение α достаточно малое (такое, что (1 – α) приблизительно равно 1), значение будет быстро убывать.

Значение параметра α сильно влияет на функционирование модели прогнозирования, поскольку α представляет собой вес самого последнего наблюдения . Это значит, что следует назначать большее значение α в том случае, когда в модели наиболее прогностическим является именно последнее наблюдение. Если же α близко к 0, это означает практически полное доверие к прошлому прогнозу и игнорирование последнего наблюдения.

Перед Виктором возникла проблема: как наилучшим образом подобрать значение α. Вновь, в этом поможет средство Поиск решения. Чтобы найти оптимальное значение α (т.е. такое, при котором прогнозная кривая будет менее всего отклоняться от кривой значений временного ряда), выполните следующие действия.

  1. Выберите команду Сервис -> Поиск решения.
  2. В открывшемся диалоговом окне Поиск решения установите целевую ячейку G16 (см. лист «Экспо») и укажите, что ее значение должно быть минимальным.
  3. Укажите, что изменяемой ячейкой является ячейка В1.
  4. Введите ограничения В1 > 0 и B1 < 1
  5. Щелкнув на кнопке Выполнить, получите результат, показанный на рис. 8.

Опять, как и в методе взвешенного скользящего среднего, наилучший прогноз будет получен, если назначить весь вес последнему наблюдению. Следовательно, оптимальное значение α равно 1, при этом среднее абсолютных отклонений равно 6,82 (ячейка G16). Виктор получил прогноз, который уже видел ранее.

Метод экспоненциального сглаживания хорошо работает в ситуациях, когда интересующая нас переменная ведет себя стационарно, а ее отклонения от постоянного значения вызваны случайными факторами и не носят регулярного характера. Но: вне зависимости от значения параметра α методом экспоненциального сглаживания не удастся спрогнозировать монотонно возрастающие или монотонно убывающие данные (прогнозируемы значения будут всегда меньше или больше наблюдаемых, соответственно). Также можно показать, что в модели с сезонными изменениями получить удовлетворительные прогнозы этим методом не удастся.

Если статистические данные монотонно изменяются или подвержены сезонным изменениям, необходимы специальные методы прогнозирования, которые будут рассмотрены ниже.

Метод Хольта (экспоненциальное сглаживание с учетом тренда)

,

Метод Хольта позволяет прогнозировать на k периодов времени вперед. Метод, как видно, использует два параметра α и β. Значения этих параметров находятся в пределах от 0 до 1. Переменная L, указывает на долгосрочный уровень значений или базовое значение данных временного ряда. Переменная Т указывает на возможное возрастание или убывание значений за один период.

Рассмотрим работу этого метода на новом примере. Светлана работает аналитиком в большой брокерской фирме. На основе имеющихся у нее квартальных отчетов компании Startup Airlines она хочет спрогнозировать доход этой компании в следующем квартале. Имеющиеся данные и диаграмма, построенная на их основе, находятся в рабочей книге Startup.xls (рис. 9). Видно, что данные имеют явный тренд (почти монотонно возрастают). Светлана хочет применить метод Хольта, чтобы спрогнозировать значение прибыли на одну акцию на тринадцатый квартал. Для этого необходимо задать начальные значения для L и Т Есть несколько вариантов выбора: 1) L равно значению прибыли на одну акцию за первый квартал и T = 0; 2) L равно среднему значению прибыли на одну акцию за 12 кварталов и T равно среднему изменению за все 12 кварталов. Существуют и другие варианты начальных значений для L и Т, но Светлана выбрала первый вариант.

Она решила воспользоваться средством Поиск решения, чтобы найти оптимальное значение параметров α и β, при которых значение среднего абсолютных ошибок в процентах было бы минимально. Для этого нужно выполнить такие действия.

Выбрать команду Сервис -> Поиск решения.

В открывшемся диалоговом окне Поиск решения задать ячейку F18 целевой и указать, что ее значение следует минимизировать.

В поле Изменяя ячейки ввести диапазон ячеек В1:В2. Добавить ограничения В1:В2 > 0 и В1:В2 < 1.

Кликнуть на кнопке Выполнить.

Полученный прогноз показан на рис. 10.

Как видно, оптимальными оказались значения α = 0,59 и β = 0,42, при этом среднее абсолютных ошибок в процентах равно 38%.

Учет сезонных изменений

При прогнозировании на основе данных временного ряда следует учитывать сезонные изменения Сезонные изменения - это колебания вверх и вниз с постоянным периодом в значениях переменной.

Например, если посмотреть на объемы продаж мороженого по месяцам, то можно увидеть в теплые месяцы (с июня по август в северном полушарии) более высокий уровень продаж, чем зимой, и так каждый год. Здесь сезонные колебания имеют период в 12 месяцев. Если используются данные, собранные по неделям, то структура сезонных колебаний будет повторяться через каждые 52 недели Другой пример анализируются еженедельные отчеты о количестве постояльцев, которые оставались на ночь в отеле, расположенном в бизнес-центре города Предположительно можно сказать, что большое число клиентов ожидается в ночи на вторник, среду и четверг, меньше всего клиентов будет в ночи на субботу и воскресенье, и среднее число постояльцев ожидается в ночи на пятницу и понедельник. Такая структура данных, отображающая количество клиентов в разные дни недели, будет повторяться через каждые семь дней.

Процедура, которая позволяет сделать прогноз с учетом сезонных изменений, состоит из таких четырех этапов

1) На основе исходных данных определяется структура сезонных колебаний и период этих колебаний.

3) На основе данных, из которых исключена сезонная составляющая, делается наилучший возможный прогноз.

4) К полученному прогнозу добавляется сезонная составляющая.

Проиллюстрируем этот подход на данных об объемах сбыта угля (измеряемого в тысячах тонн) в США на протяжении девяти лет Фрэнк работает менеджером в компании Gillette Coal Mine, ему необходимо спрогнозировать спрос на уголь на ближайшие два квартала. Он ввел данные по всей угольной отрасли в рабочую книгу Уголь.xls и построил по этим данным график (рис. 11). На графике видно, что объемы продаж выше среднего уровня в первом и четвертом кварталах (зимнее время года) и ниже среднего во втором и третьем кварталах (весенне-летние месяцы).

Исключение сезонной составляющей

Сначала необходимо вычислить среднее значение всех отклонений за один период сезонных изменений. Чтобы исключить сезонную составляющую в пределах одного года, используются данные за четыре периода (квартала). А чтобы исключить сезонную составляющую из всего временного ряда, вычисляется последовательность скользящих средних по T узлам, где T - продолжительность сезонных колебаний Для выполнения необходимых вычислений Фрэнк использовал столбцы С и D, как показано на рис. ниже. Столбец С содержит значения скользящего среднего по 4 узлам на основе данных, которые находятся в столбце В.

Теперь надо назначить полученные значения скользящего среднего средним точкам последовательности данных, на основе которых эти значения были вычислены. Эта операция называется центрированием значений. Если T нечетное, то первое значение скользящего среднего (среднее значений от первой до T-й точки) надо присвоить (T + 1)/2 точке (например, если T = 7, то первое скользящее среднее будет назначено четвертой точке). Аналогично среднее значений от второй до (T + 1)-й точки центрируется в (T + 3)/2 точке и т. д. Центр n-го интервала находится в точке (T+(2n-1))/2.

Если T четное, как в рассматриваемом случае, то задача несколько усложняется, поскольку здесь центральные (средние) точки расположены между точками, по которым вычислялось значение скользящего среднего. Поэтому центрированное значение для третьей точки вычисляется как среднее первого и второго значений скользящего среднего. Например, первое число в столбце D отцентрированных средних на рис. 12, слева равняется (1613 + 1594)/2 = 1603. На рис. 13 показаны графики исходных данных и отцентрированных средних.

Далее находим отношения значений точек данных к соответствующим значениям отцентрированных средних. Поскольку точкам в начале и конце последовательности данных нет соответствующих отцентрированных средних (см. первые и последние значения в столбце D), такое действие на эти точки не распространяется. Эти отношения показывают степень отклонения значений данных относительно типового уровня, определяемого отцентрированными средними. Заметим, что значения отношений для третьих кварталов меньше 1, а для четвертых - больше 1.

Эти отношения являются основой для создания сезонных индексов. Для их вычисления группируются вычисленные отношения по кварталам, как показано на рис. 15 в столбцах G-О.

Затем находятся средние значения отношений по каждому кварталу (столбец Е на рис. 15). Например, среднее всех отношений для первого квартала равно 1,108. Это значение является сезонным индексом первого квартала, на основе которого можно сделать вывод, что объем сбыта угля за первый квартал составляет в среднем около 110,8% относительного среднего годового объема сбыта.

Сезонный индекс - это среднее отношение данных, относящихся к одному сезону (в данном случае сезоном является квартал), ко всем данным. Если сезонный индекс больше 1, значит, показатели этого сезона выше средних показателей за год, аналогично, если сезонный индекс ниже 1, то показатели сезона ниже средних показателей за год.

Наконец, чтобы исключить из исходных данных сезонную составляющую, следует поделить значения исходных данных на соответствующий сезонный индекс. Результаты этой операции приведены в столбцах F и G (рис. 16). График данных, которые уже не содержат сезонной составляющей, представлен на рис. 17.

Прогнозирование

На основе данных, из которых исключена сезонная составляющая, строится прогноз. Для этого используется соответствующий метод, который учитывает характер поведения данных (например, данные имеют тренд или относительно постоянны). В этом примере прогноз строится с помощью простого экспоненциального сглаживания. Оптимальное значение параметра α находится с помощью средства Поиск решения. График прогноза и реальных данных с исключенной сезонной составляющей приведены на рис. 18.

Учет сезонной структуры

Теперь нужно учесть в полученном прогнозе (1726,5) сезонную составляющую. Для этого следует умножить 1726 на сезонный индекс первого квартала 1,108, в результате чего получим значение 1912 Аналогичная операция (умножение 1726 на сезонный индекс 0,784) даст прогноз на второй квартал, равный 1353. Результат добавления сезонной структуры к полученному прогнозу показан на рис. 19.

Варианты заданий:

Задача 1

Дан временной ряд

t
x

1. Постройте график зависимости x = x(t).

  1. Используя простое скользящее среднее по 4 узлам, спрогнозируйте спрос в 11-й момент времени.
  2. Подходит ли такой метод прогнозирования для этих данных или нет? Почему?
  3. Подберите линейную функцию приближения данных методом наименьших квадратов.

Задача 2

Пользуясь моделью прогнозов доходов компании Startup Airlines (Startup.xls) выполните:

Задача 3

Для временного ряда

t
x

выполните:

  1. Используя взвешенное скользящее среднее по 4 узлам, и назначив веса 4/10, 3/10, 2/10, 1/10, спрогнозируйте спрос в 11-й момент времени. Больший вес следует назначать более поздним наблюдениям.
  2. Является ли данное приближение более предпочтительным по отношению к простому скользящему среднему по 4 узлам? Почему?
  3. Найдите среднее абсолютных отклонений.
  4. С помощью средства Поиск решения найдите оптимальные веса узлов. Насколько уменьшилась ошибка приближения?
  5. Воспользуйтесь для прогноза методом экспоненциального сглаживания. Какой их использованных методов дает лучший рещультат?

Задача 4

Проанализируйте временной ряд

Время
Спрос
  1. Воспользуйтесь методом взвешенного скользящего среднего по 4 узлам, назначив веса 4/10, 3/10, 2/10, 1/10, чтобы получить прогноз в моменты времени 5-13. Больший вес следует назначать более поздним наблюдениям.
  2. Найдите среднее абсолютных отклонений.
  3. Считаете ли вы, что данное приближение более предпочтительно по сравнению с моделью простого скользящего среднего по 4 узлам? Почему?
  4. С помощью средства Поиск решения найдите оптимальные веса узлов. На сколько удалось уменьшить значение ошибки?
  5. Воспользуйтесь для прогноза методом экспоненциального сглаживания. Какой их использованных методов дает лучший результат?

Задача 5

Дан временной ряд

Задача 7

Менеджер по маркетингу небольшой развивающейся компании, содержащей сеть продовольственных магазинов, обладает информацией об объемах продаж за все время существования самого прибыльного магазина (см. табл.).

Используя простое скользящее среднее по 3 узлам, спрогнозируйте значения в узлах с 4 до 11.

Используя взвешенное скользящее среднее по 3 узлам, спрогнозируйте значения в узлах с 4 до 11. Для определения оптимальных весов воспользуйтесь средством Поиск решения.

Методом экспоненциального сглаживания спрогнозируйте значения в узлах 2-11. Определите оптимальное значение параметра α с помощью средства Поиск решения.

Какой из полученных прогнозов наиболее точный и почему?

Задача 8

Дан временной ряд

  1. Постройте график этого временного ряда. Соедините точки отрезками прямых.
  2. Используя простое скользящее среднее по 4 узлам, спрогнозируйте спрос для узлов 5–13.
  3. Найдите среднее абсолютных отклонений.
  4. Целесообразно ли использовать данный метод прогнозирования для представленных данных?
  5. Является ли данное приближение более предпочтительным по отношению к простому скользящему среднему по 3 узлам? Почему?
  6. Постройте по данным линейный и квадратичный тренд.
  7. Воспользуйтесь для прогноза методом экспоненциального сглаживания. Какой их использованных методов дает лучший рещультат?

Задача 10

В рабочей книге Business_Week.xls приведены данные из журнала Business Week по ежемесячным объемам продаж автомобилей за 43 месяца.

  1. Исключите из этих данных сезонную составляющую.
  2. Определите наилучший метод прогнозирования для имеющихся данных.
  3. Чему равен прогноз для 44-го периода?

Задача 11

  1. Простая схема прогнозирования, когда значение за прошлую неделю принимается за прогноз на следующую неделю.
  2. Метод скользящего среднего (с числом узлов на ваше усмотрение). Попробуйте использовать несколько различных значений узлов.

Задача 12

В рабочей книге Банк.xls приведены показатели работы банка. Рассмотрите следующие методы прогнозирования значений этого временного ряда.

В качестве прогноза используется среднее значение показателя за все предыдущие недели.

Метод взвешенного скользящего среднего (с числом узлов на ваше усмотрение). Попробуйте использовать несколько различных значений узлов. Для определения оптимальных весов воспользуйтесь средством Поиск решения.

Метод экспоненциального сглаживания. Подберите оптимальное значение параметра α с помощью средства Поиск решения.

Какой из предложенных выше методов прогнозирования вы бы порекомендовали для прогноза значений данного временного ряда?

Литература


Похожая информация.


Экстраполяция - это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод экспоненциального сглаживания наиболее эффективен при разработке среднесрочных прогнозов. Он приемлем при прогнозировании только на один период вперед. Его основные достоинства простота процедуры вычислений и возможность учета весов исходной информации. Рабочая формула метода экспоненциального сглаживания:

При прогнозировании данным методом возникает два затруднения:

  • выбор значения параметра сглаживания α;
  • определение начального значения Uo.

От величины α зависит , как быстро снижается вес влияния предшествующих наблюдений. Чем больше α, тем меньше сказывается влияние предшествующих лет. Если значение α близко к единице, то это приводит к учету при прогнозе в основном влияния лишь последних наблюдений. Если значение α близко к нулю, то веса, по которым взвешиваются уровни временного ряда, убывают медленно, т.е. при прогнозе учитываются все (или почти все) прошлые наблюдения.

Таким образом, если есть уверенность, что начальные условия, на основании которых разрабатывается прогноз, достоверны, следует использовать небольшую величину параметра сглаживания (α→0). Когда параметр сглаживания мал, то исследуемая функция ведет себя как средняя из большого числа прошлых уровней. Если нет достаточной уверенности в начальных условиях прогнозирования, то следует использовать большую величину α, что приведет к учету при прогнозе в основном влияния последних наблюдений.

Точного метода для выбора оптимальной величины параметра сглаживания α нет. В отдельных случаях автор данного метода профессор Браун предлагал определять величину α, исходя из длины интервала сглаживания. При этом α вычисляется по формуле:

где n – число наблюдений, входящих в интервал сглаживания.

Задача выбора Uo (экспоненциально взвешенного среднего начального) решается следующими способами:

  • если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической и приравнять к ней Uo;
  • если таких сведений нет, то в качестве Uo используют исходное первое значение базы прогноза У1.

Также можно воспользоваться экспертными оценками.

Отметим, что при изучении экономических временных рядов и прогнозировании экономических процессов метод экспоненциального сглаживания не всегда «срабатывает». Это обусловлено тем, что экономические временные ряды бывают слишком короткими (15-20 наблюдений), и в случае, когда темпы роста и прироста велики, данный метод не «успевает» отразить все изменения.

Пример применения метода экспоненциального сглаживания для разработки прогноза

Задача . Имеются данные, характеризующие уровень безработицы в регионе, %

  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом экспоненциального сглаживания

1) Определяем значение параметра сглаживания по формуле:

где n – число наблюдений, входящих в интервал сглаживания. α = 2/ (10+1) = 0,2

2) Определяем начальное значение Uo двумя способами:
І способ (средняя арифметическая) Uo = (2,99 + 2,66 + 2,63 + 2,56 + 2,40 + 2,22 + 1,97 + 1,72 + 1,56 + 1,42)/10 = 22,13/10 = 2,21
II способ (принимаем первое значение базы прогноза) Uo = 2,99

3) Рассчитываем экспоненциально взвешенную среднюю для каждого периода, используя формулу

где t – период, предшествующий прогнозному; t+1 – прогнозный период; Ut+1 - прогнозируемый показатель; α - параметр сглаживания; Уt - фактическое значение исследуемого показателя за период, предшествующий прогнозному; Ut - экспоненциально взвешенная средняя для периода, предшествующего прогнозному.

Например:
Uфев = 2,99*0,2 +(1-0,2) * 2,21 = 2,37 (І способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,37 = 2,43 (І способ) и т.д.

Uфев = 2,99*0,2 +(1-0,2) * 2,99 = 2,99 (II способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,99 = 2,92 (II способ)
Uапр = 2,63*0,2+(1-0,2) * 2,92 = 2,86 (II способ) и т.д.

4) По этой же формуле вычисляем прогнозное значение
Uноябрь= 1,42*0,2+(1-0,2) * 2,08 = 1,95 (І способ)
Uноябрь= 1,42*0,2+(1-0,2) * 2,18 = 2,03 (ІІ способ)
Результаты заносим в таблицу.

5) Рассчитываем среднюю относительную ошибку по формуле:

ε = 209,58/10 = 20,96% (І способ)
ε = 255,63/10 = 25,56% (ІІ способ)

В каждом случае точность прогноза является удовлетворительной поскольку средняя относительная ошибка попадает в пределы 20-50%.

Решив данную задачу методами скользящей средней и наименьших квадратов , сделаем выводы.


к.э.н., директор по науке и развитию ЗАО "КИС"

Метод экспоненциального сглаживания

Освоение новых и анализ известных управленческих технологий, которые позволяют повысить эффективность управления бизнесом, становится особенно актуальным для российских предприятий в настоящее время. Один из наиболее популярных инструментов - система бюджетирования, которая базируется на формировании бюджета предприятия с последующим контролем исполнения. Бюджет представляет собой сбалансированные краткосрочные коммерческие, производственные, финансовые и хозяйственные планы развития организации. Бюджет предприятия содержит целевые показатели, которые рассчитываются на основании прогнозных данных. Наиболее значимым прогнозом при составлении бюджета для любого предприятия является прогноз продаж. В предыдущих статьях был проведен анализ аддитивной и мультипликативной модели и рассчитан прогнозный объем продаж на следующие периоды.

При анализе временных рядов использовался метод скользящей средней, в котором все данные независимо от периода их возникновения являются равноправными. Существует другой способ, в котором данным приписываются веса, более поздним данным придается больший вес, чем более ранним.

Метод экспоненциального сглаживания в отличие от метода скользящих средних еще и может быть использован для краткосрочных прогнозов будущей тенденции на один период вперед и автоматически корректирует любой прогноз в свете различий между фактическим и спрогнозированным результатом. Именно поэтому метод обладает явным преимуществом над ранее рассмотренным.

Название метода происходит из того факта, что при его применении получаются экспоненциально взвешенные скользящие средние по всему временному ряду. При экспоненциальном сглаживании учитываются все предшествующие наблюдения - предыдущее учитывается с максимальным весом, предшествующее ему - с несколько меньшим, самое ранее наблюдение влияет на результат с минимальным статистическим весом.

Алгоритм расчета экспоненциально сглаженных значений в любой точке ряда i основан на трех величинах :

фактическое значение Ai в данной точке ряда i,
прогноз в точке ряда Fi
некоторый заранее заданный коэффициент сглаживания W, постоянный по всему ряду.

Новый прогноз можно записать формулой:

Расчет экспоненциально сглаженных значений

При практическом использовании метода экспоненциального сглаживания возникает две проблемы: выбор коэффициента сглаживания (W), который в значительной степени влияет на результаты и определение начального условия (Fi). С одной стороны, для сглаживания случайных отклонений величину нужно уменьшать. С другой стороны, для увеличения веса новых измерений нужно увеличивать.

Хотя, в принципе, W может принимать любые значения из диапазона 0 < W < 1, обычно ограничиваются интервалом от 0,2 до 0,5. При высоких значениях коэффициента сглаживания в большей степени учитываются мгновенные текущие наблюдения отклика (для динамично развивающихся фирм) и, наоборот, при низких его значениях сглаженная величина определяется в большей степени прошлой тенденцией развития, нежели текущим состоянием отклика системы (в условиях стабильного развития рынка).

Выбор коэффициента постоянной сглаживания является субъективным. Аналитики большинства фирм при обработке рядов используют свои традиционные значения W. Так, по опубликованным данным в аналитическом отделе Kodak, традиционно используют значение 0,38, а на фирме Ford Motors - 0,28 или 0,3.

Ручной расчет экспоненциального сглаживания требует крайне большого объема монотонной работы. На примере рассчитаем прогнозный объем на 13 квартал, если имеются данные объема продаж за последние 12 кварталов, используя метод простого экспоненциального сглаживания.

Предположим, что на первый квартал прогноз продаж составил 3. И пусть коэффициент сглаживания W =0,8.

Заполним в таблице третий столбец, подставляя для каждого последующего квартала значение предыдущего по формуле:

Для 2 квартала F2 =0,8*4 (1-0,8)*3 =3,8
Для 3 квартала F3 =0,8*6 (1-0,8)*3,8 =5,6

Аналогично, рассчитывается сглаженное значение для коэффициента 0,5 и 0,33.


Расчет прогноза объема продаж

Прогноз объема продаж при W = 0.8 на 13 квартал составил 13.3 тыс.руб.

Эти данные можно представить в графической форме:


Экспоненциальное сглаживание

Экспоненциальное сглаживание - способ сглаживания временных рядов, вычислительная процедура которого включает обработку всех предыдущих наблюдений, при этом учитывается устаревание информации по мере удаления от прогнозного периода. Иначе говоря, чем "старше" наблюдение, тем меньше оно должно влиять на величину прогнозной оценки. Идея экспоненциального сглаживания состоит в том, что по мере "старения" соответствующим наблюдениям придаются убывающие веса.

Данный метод прогнозирования считается весьма эффективным и падежным. Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным моментом является выбор параметра сглаживания (сглаживающей константы) и начальных условий.

Простое экспоненциальное сглаживание временных рядов, содержащих тренд, приводит к систематической ошибке, связанной с отставанием сглаженных значений от фактических уровней временного ряда. Для учета тренда в нестационарных рядах применяется специальное двухпараметрическое линейное экспоненциальное сглаживание. В отличие от простого экспоненциального сглаживания с одной сглаживающей константой (параметром) данная процедура сглаживает одновременно случайные возмущения и тренд с использованием двух различных констант (параметров). Двухпараметрический метод сглаживания (метод Хольта) включает два уравнения. Первое предназначено для сглаживания наблюденных значений, а второе -для сглаживания тренда:

где I - 2, 3, 4 - периоды сглаживания; 5, - сглаженная величина на период £; У, - фактическое значение уровня на период 1 5, 1 - сглаженное значение на период Ь-Ьг- сглаженное значение тренда на период 1 - сглаженное значение на период I- 1; А и В - сглаживающие константы (числа между 0 и 1).

Сглаживающие константы А и В характеризуют фактор взвешивания наблюдений. Обычно Л, В < 0,3. Так как (1 - А) < 1, (1 - В) < 1, то они убывают по экспоненциальному закону по мере удаления наблюдения от текущего периода I. Отсюда данная процедура получила название экспоненциально сглаживания.

Уравнение добавляется в общую процедуру для сглаживания тренда. Каждая новая оценка тренда получается как взвешенная сумма разности между последними двумя сглаженными значениями (текущая оценка тренда) и предыдущей сглаженной оценки. Данное уравнение позволяет существенно сократить влияние случайных возмущений на тренд с течением времени.

Прогнозирование с использованием экспоненциального сглаживания подобно процедуре "наивного" прогнозирования, когда прогнозная оценка на завтра полагается равной сегодняшнему значению. В данном случае в качестве прогноза на один период вперед рассматривается сглаженная величина на текущий период плюс текущее сглаженное значение тренда:

Данную процедуру можно использовать для прогнозирования на любое число периодов, на пример на т периодов:

Процедура прогнозирования начинается с того, что сглаженная величина 51 полагается равной первому наблюдению У, т.е. 5, = У,.

Возникает проблема определения начального значения тренда 6]. Существуют два способа оценки Ьх.

Способ 1. Положим Ьх = 0. Такой подход хорошо работает в случае длинного исходного временного ряда. Тогда сглаженный тренд за небольшое число периодов приблизится к фактическому значению тренда.

Способ 2. Можно получить более точную оценку 6, используя первые пять (или более) наблюдений временного ряда. На их основе гю методу наименьших квадратов решается уравнение У(= а + Ь х г. Величина Ь берется в качестве начального значения тренда.

Простая и логически ясная модель временного ряда имеет следующий вид:

Y t = b + e t

у, = Ь + г„ (11.5)

где b - константа, e - случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения значения b из данных состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблю­дениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред- предпоследним, и т.д. Простое экспоненциальное сглаживание имен­но так и построено. Здесь более старым наблюдениям приписываются экспоненци­ально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не только те, которые попали в определен­ное окно. Точная формула простого экспоненциального сглаживания имеет вид:

S t = a y t + (1 - a) S t -1

Когда эта формула применяется рекурсивно, каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра a. Если a равен 1, то предыдущие наблюдения полностью игнорируются. Если aравен 0, то игнорируются текущие наблюдения. Значения a между 0 и 1 дают промежуточные результаты. Эмпирические исследования показали, что простое экспоненциальное сглаживание весьма часто дает достаточно точный прогноз.

На практике обычно рекомендуется брать a меньше 0,30. Однако выбор a больше 0,30 иногда дает более точный прогноз. Это значит, что лучше все же оценивать оптимальное значение a по реальным данным, чем использовать общие рекомендации.

На практике оптимальный параметр сглаживания часто ищется с использованием процедуры поиска на сетке. Возможный диапазон значений параметра разбивается сеткой с определенным шагом. Например, рассматривается сетка значений от a = 0,1 до a = 0,9 с шагом 0,1. Затем выбирается такое значение a, для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Microsoft Excel располагает функцией Exponential Smoothing (Экспоненциальное сглаживание), которая обычно используется для сглаживания уровней эмпирической временного ряда на основе метода простого экспоненциального сглаживания. Для вызова этой функции необходимо на панели меню выбрать команду Tools Þ Data Analysis. На экране раскроется окно Data Analysis, в котором следует выбрать значение Exponential Smoothing (Экспоненциальное сглаживание). В результате появится диалоговое окно Exponential Smoothing.

В диалоговом окне Exponential Smoothing задаются практически те же параметры, что и в рассмотренном выше диалоговом окне Moving Average.

1. Input Range (Входные данные) - в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels (Метки) - данный флажок опции устанавливается в том случае, если
первая строка (столбец) во входном диапазоне содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Damping factor (Фактор затухания) - в это поле вводится значение выбранного коэффициента экспоненциального сглаживания а. По умолчанию принимаете значение а = 0,3.

4. Output options (Параметры вывода) - в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего необходимо установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего нужно установить флажок опции Standart Erroг (Стандартные погрешности).

Задание 2. С помощью программы Microsoft Excel, используя функцию Экспоненциального сглаживания (Exponential Smoothing), на основании данных об объеме выпуска Задания 1 рассчитать сглаженные уровни выпуска и стандартные погрешности. Затем представить фактические и прогнозируемые данные с помощью диаграммы. Подсказка: должна получиться таблица и график, аналогичный выполненному в задание 1, но с другими сглаженными уровнями и стандартными погрешностями.

Метод аналитического выравнивания

где - теоретические значения временного ряда, вычисленные по соответствующе­му аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) значений , производится на основе так называемой адекватной математической модели, которая наилучшим образом отобра­жает основную тенденцию развития временного ряда.

Простейшими моделями (формулами), выражающими тенденцию развития, явля­ются следующие:

Линейная функция, график которой является прямой линией:

Показательная функция:

Y t = a 0 * a 1 t

Степенная функция второго порядка, график которой является параболой:

Y t = a 0 + a 1 * t + a 2 * t 2

Логарифмическая функция:

Y t = a 0 + a 1 * ln t

Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадра­тов отклонений между теоретическим и эмпирическим уровнями:

где - выровненные (расчетные) уровни, а Yt - фактические уровни.

Параметры уравнения a i удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выровненные уровни.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции применяется, когда ряд отражает развитие в геометрической профессии, т.е. цепные коэффициенты роста практически постоянны.

Выравнивание по степенной функции (параболе второго порядка) используется, ко­гда ряды динамики изменяются с постоянными цепными темпами прироста.

Выравнивание по логарифмической функции применяется, когда ряд отражает разви­тие с замедлением роста в конце периода, т.е. когда прирост в конечных уровнях вре­менного ряда стремится к нулю.

По вычисленным параметрам выполняется синтез трендовой модели функции, т.е. получение значений a 0 , a 1 , a ,2 и их подстановка в искомое уравнение.

Правильность расчетов аналитических уровней можно проверить по следующему условию: сумма значений эмпирического ряда должна совпадать с суммой вычислен­ных уровней выровненного ряда. При этом может возникнуть небольшая погрешность в расчетах из-за округления вычисляемых величин:

Для оценки точности трендовой модели используется коэффициент детерминации:

где - дисперсия теоретических данных, полученных по трендовой модели, а - дисперсия эмпирических данных.

Трендовая модель адекватна изучаемому процессу и отражает тенденцию его раз­вития при значениях R 2 , близких к 1.

После выбора наиболее адекватной модели можно сделать прогноз на любой из периодов. При составлении прогнозов оперируют не точечной, а интервальной оцен­кой, определяя так называемые доверительные интервалы прогноза. Величина довери­тельного интервала определяется в общем виде следующим образом:

где среднее квадратическое отклонение от тренда; t a - табличное значение t- критерия Стьюдента при уровне значимости a , которое зависит от уровня значимо­стиa (%) и числа степеней свободы к = п - т. Величина - определяется по формуле:

где и – фактические и расчетные значения уровней динамического ряда; п - число уровней ряда; т - количество параметров в уравнении тренда (для уравнения прямой т - 2, для уравнения параболы 2-го порядка т = 3).

После необходимых расчетов определяется интервал, в котором с определенной вероятностью будет находиться прогнозируемая величина.

С помощью Microsoft Excel строить трендовые модели достаточно просто. Сначала эмпирический временной ряд следует представить в виде диаграммы одного из сле­дующих типов: гистограмма, линейчатая диаграмма, график, точечная диаграмма, диаграмма с областями, а затем щелкнуть на диаграмме правой кнопкой мыши на од­ном из маркеров данных. В результате на диаграмме будет выделен сам временной ряд, а на экране раскроется контекстное меню. В этом ме­ню следует выбрать команду Add Trendline (Добавить линию тренда). На экран будет выведено диалоговое окно Add Trendline.

На вкладке Туре (Тип) этого диалогового окна выбирается требуемый тип тренда:

1. линейный (Linear);

2. логарифмический (Logarithmic);

3. полиномиальный, от 2-й до 6-й степени включительно (Polinomial);

4. степенной (Power);

5. экспоненциальный (Exponential);

6. скользящее среднее, с указанием периода сглаживания от 2 до 15 (Moving Average).

На вкладке Options (Параметры) этого диалогового окна задаются дополнительные параметры тренда.

1. Trendline Name (Название сглаженной кривой) - в этой группе выбирается на­звание, которое будет выведено на диаграмму для обозначения функции, исполь­зованной для сглаживания временного ряда. Возможны следующие варианты:

♦ Automatic (Автоматическое) - при установке переключателя в это положе­ние Microsoft Excel автоматически формирует название функции сглажива­ния тренда, основываясь на выбранном типе тренда, например Linear (Линейная функция).

♦ Custom (Другое) - при установке переключателя в данное положение в по­ле справа можно ввести собственное название для функции тренда, длиной до 256 символов.

2. Forecast (Прогноз) - в этой группе можно указать, на сколько периодов вперед (поле Forward) требуется спроектировать линию тренда в будущее и на сколько периодов назад (поле Backward) следует спроектировать линию тренда в про­шлое (эти поля недоступны в режиме скользящего среднего).

3. Set intercept (Пересечение кривой с осью Y в точке) - этот флажок опции и расположенное справа поле ввода позволяют непосредственно указать точку, в которой линия тренда должна пересекать ось Y (эти поля доступны не для всех режимов).

4. Display equation on chart (Показывать уравнение на диаграмме) - при установке этого флажка опции на диаграмму будет выведено уравнение, описывающее сглаживающую линию тренда.

5. Display R-squared value on chart (Поместить на диаграмму величину достоверно­сти аппроксимации R 2) - при установке данного флажка опции на диаграмме будет показано значение коэффициента детерминации.

Вместе с линией тренда на графике временного ряда могут быть также изображены планки погрешностей. Для вставки планок погрешностей необходимо выделить ряд данных, щелкнуть на нем правой кнопкой мыши и выбрать в раскрывшемся контек­стном меню команду Format Data Series. На экране раскроется диалоговое окно Format Data Series (Формат ряда данных), в котором следует перейти на вкладку Y Error Bars (Y-погрешности).

На этой вкладке с помощью переключателя Error amount (Величина погрешности) выбирается тип планок и вариант их расчета в зависимости от вида погрешности.

1. Fixed value (Фиксированное значение) - при установке переключателя в это положение за допустимую величину ошибки принимается заданное в поле счетчика справа постоянное значение;

2. Percentage (Относительное значение) - при установке переключателя в данное положение для каждой точки данных вычисляется допустимое отклонение, исходя из заданного в поле счетчика справа значения процента;

3. Standard deviation(s) (Стандартное отклонение) - при установке переключателя в данное положение для каждой точки данных вычисляется стандартное отклонение, которое затем умножается на заданное в поле счетчика справа число (коэффициент кратности);

4. Standard error (Стандартная погрешность) - при установке переключателя в данное положение принимается стандартная величина ошибки, постоянная для всех элементов данных;

5. Custom (Пользовательская) - при установке переключателя в это положение вводится произвольный массив значений отклонений в положительную и/или отрицательную сторону (можно ввести ссылки на диапазон ячеек).

Планки погрешностей тоже можно форматировать. Для этого их следует выделить щелчком правой кнопки мыши и выбрать в раскрывшемся контекстном меню коман­ду Format Error Bars (Формат планок погрешностей).

Задание 3. С помощью программы Microsoft Excel на основании данных об объеме выпуска Задания 1 необходимо:

Представить временной ряд в виде графика, построенного с помощью мастера диаграмм. Затем добавить линию тренда, подбирая наиболее подходящий вариант уравнения.

Представить полученные результаты в виде таблицы «Подбор уравнения тренда»:

Таблица «Подбор уравнения тренда»

Представить выбранное уравнение графически, вынеся в график данные о наименовании полученной функции и величину достоверности аппроксимации (R 2).

Задание 4. Ответьте на следующие вопросы:

1. При анализе тренда для некоторого набора данных коэффициент детерминации для линейной модели оказался равен 0,95, для логарифмической - 0,8, а для полинома третьей степени - 0,9636. Какая трендовая модель наиболее адекват­на изучаемому процессу:

а) линейная;

б) логарифмическая;

в) полином 3-й степени.

2. По данным, представленным в задании 1, спрогнозируйте объем выпуска про­дукции в 2003 году. Какая общая тенденция поведения исследуемой величины следует из результатов вашего прогноза:

а) наблюдается спад производства;

б) производство остается на прежнем уровне;

в) наблюдается рост производства.

В данном материале были рассмотрены основные характеристики временного ряда, мо­дели декомпозиции временного ряда, а также основные методы сглаживания ряда - метод скользящего среднего, экспоненциального сглаживания и аналитического вы­равнивания. Для решения этих задач Microsoft Excel предлагаются такие инструменты, как Moving Average (Скользящее среднее) и Exponential Smoothing (Экспоненциальное сглаживание), которые позволяют сглаживать уровни эмпирического временного ряда, а также команда Add Trendiine (Добавить линию тренда), которая позволяет строить модели тренда и делать прогноз на основе имеющихся значений временного ряда.

P.S. Чтобы включить «Пакет анализ данных», выберите команду Tools →Data Analysis (Сервис → Анализ данных).

Если Data Analysis отсутствует, то необходимо выполнить следующие действия:

1. Выбрать команду Tools → Add-ins (Надстройки).

2. Выбрать в предложенном списке настроек значение Analysis ToolPak (Пакет анализа), а затем щелкнуть ОК. После этого будет выполнена загрузка и подключение к Excel пакета настройки «Анализ данных». Соответствующая команда появится в меню Tools.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27